8,963 research outputs found
Monitoring Progressive Multiple Sclerosis with Novel Imaging Techniques.
Imaging markers for monitoring disease progression in progressive multiple sclerosis (PMS) are scarce, thereby limiting the possibility to monitor disease evolution and to test effective treatments in clinical trials. Advanced imaging techniques that have the advantage of metrics with increased sensitivity to short-term tissue changes and increased specificity to the structural abnormalities characteristic of PMS have recently been applied in clinical trials of PMS. In this review, we (1) provide an overview of the pathological features of PMS, (2) summarize the findings of research and clinical trials conducted in PMS which have applied conventional and advanced magnetic resonance imaging techniques and (3) discuss recent advancements and future perspectives in monitoring PMS with imaging techniques
Monitoring Progressive Multiple Sclerosis with Novel Imaging Techniques
Imaging markers for monitoring disease progression in progressive multiple sclerosis (PMS) are scarce, thereby limiting the possibility to monitor disease evolution and to test effective treatments in clinical trials. Advanced imaging techniques that have the advantage of metrics with increased sensitivity to short-term tissue changes and increased specificity to the structural abnormalities characteristic of PMS have recently been applied in clinical trials of PMS. In this review, we (1) provide an overview of the pathological features of PMS, (2) summarize the findings of research and clinical trials conducted in PMS which have applied conventional and advanced magnetic resonance imaging techniques and (3) discuss recent advancements and future perspectives in monitoring PMS with imaging techniques
An electromagnetic shashlik calorimeter with longitudinal segmentation
A novel technique for longitudinal segmentation of shashlik calorimeters has
been tested in the CERN West Area beam facility. A 25 tower very fine samplings
e.m. calorimeter has been built with vacuum photodiodes inserted in the first 8
radiation lengths to sample the initial development of the shower. Results
concerning energy resolution, impact point reconstruction and electron/pion
separation are reported.Comment: 13 pages, 12 figure
Real-time optical manipulation of cardiac conduction in intact hearts
Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an allâoptical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wideâfield mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in freeârun mode with submillisecond temporal resolution or in a closedâloop fashion: a tailored hardware and software platform allowed realâtime intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Realâtime intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for realâtime resynchronization therapy and cardiac defibrillation. Furthermore, the closedâloop approach was applied to simulate a reâentrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proofâofâconcept that a realâtime optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart
Early red nucleus atrophy in relapse-onset multiple sclerosis
No study has investigated red nucleus (RN) atrophy in multiple sclerosis (MS) despite cerebellum and its connections are elective sites of MS-related pathology. In this study, we explore RN atrophy in early MS phases and its association with cerebellar damage (focal lesions and atrophy) and physical disability. Thirty-seven relapse-onset MS (RMS) patients having mean age of 35.6 ± 8.5 (18â56) years and mean disease duration of 1.1 ± 1.5 (0â5) years, and 36 age- and sex-matched healthy controls (HC) were studied. Cerebellar and RN lesions and volumes were analyzed on 3 T-MRI images. RMS did not differ from HC in cerebellar lobe volumes but significantly differed in both right (107.84 ± 13.95 mm3 vs. 99.37 ± 11.53 mm3, p =.019) and left (109.71 ± 14.94 mm3 vs. 100.47 ± 15.78 mm3, p =.020) RN volumes. Cerebellar white matter lesion volume (WMLV) inversely correlated with both right and left RN volumes (r = â.333, p =.004 and r = â.298, p =.010, respectively), while no correlation was detected between RN volumes and mean cortical thickness, cerebellar gray matter lesion volume, and supratentorial WMLV (right RN: r = â.147, p =.216; left RN: r = â.153, p =.196). Right, but not left, RN volume inversely correlated with midbrain WMLV (r = â.310, p =.008), while no correlation was observed between whole brainstem WMLV and either RN volumes (right RN: r = â.164, p =.164; left RN: r = â.64, p =.588). Finally, left RN volume correlated with vermis VIIb (r =.297, p =.011) and right interposed nucleus (r =.249, p =.034) volumes. We observed RN atrophy in early RMS, likely resulting from anterograde axonal degeneration starting in cerebellar and midbrain WML. RN atrophy seems a promising marker of neurodegeneration and/or cerebellar damage in RMS
- âŠ