2,004 research outputs found
All-Optical Production of Chromium Bose-Einstein Condensates
We report on the production of ^52Cr Bose Einstein Condensates (BEC) with an
all-optical method. We first load 5.10^6 metastable chromium atoms in a 1D
far-off-resonance optical trap (FORT) from a Magneto Optical Trap (MOT), by
combining the use of Radio Frequency (RF) frequency sweeps and depumping
towards the ^5S_2 state. The atoms are then pumped to the absolute ground
state, and transferred into a crossed FORT in which they are evaporated. The
fast loading of the 1D FORT (35 ms 1/e time), and the use of relatively fast
evaporative ramps allow us to obtain in 20 s about 15000 atoms in an almost
pure condensate.Comment: 4 pages, 4 figure
Crossing fishery statistics with marine turtle bycatch data and habitat mapping in Martinique, FW
Development of probabilistic models for quantitative pathway analysis of plant pest introduction for the EU territory
This report demonstrates a probabilistic quantitative pathway analysis model that can be used in risk assessment for plant pest introduction into EU territory on a range of edible commodities (apples, oranges, stone fruits and wheat). Two types of model were developed: a general commodity model that simulates distribution of an imported infested/infected commodity to and within the EU from source countries by month; and a consignment model that simulates the movement and distribution of individual consignments from source countries to destinations in the EU. The general pathway model has two modules. Module 1 is a trade pathway model, with a Eurostat database of five years of monthly trade volumes for each specific commodity into the EU28 from all source countries and territories. Infestation levels based on interception records, commercial quality standards or other information determine volume of infested commodity entering and transhipped within the EU. Module 2 allocates commodity volumes to processing, retail use and waste streams and overlays the distribution onto EU NUTS2 regions based on population densities and processing unit locations. Transfer potential to domestic host crops is a function of distribution of imported infested product and area of domestic production in NUTS2 regions, pest dispersal potential, and phenology of susceptibility in domestic crops. The consignment model covers the several routes on supply chains for processing and retail use. The output of the general pathway model is a distribution of estimated volumes of infested produce by NUTS2 region across the EU28, by month or annually; this is then related to the accessible susceptible domestic crop. Risk is expressed as a potential volume of infested fruit in potential contact with an area of susceptible domestic host crop. The output of the consignment model is a volume of infested produce retained at each stage along the specific consignment trade chain
Accumulation and thermalization of cold atoms in a finite-depth magnetic trap
We experimentally and theoretically study the continuous accumulation of cold
atoms from a magneto-optical trap (MOT) into a finite depth trap, consisting in
a magnetic quadrupole trap dressed by a radiofrequency (RF) field. Chromium
atoms (52 isotope) in a MOT are continuously optically pumped by the MOT lasers
to metastable dark states. In presence of a RF field, the temperature of the
metastable atoms that remain magnetically trapped can be as low as 25 microK,
with a density of 10^17 atoms.m-3, resulting in an increase of the phase-space
density, still limited to 7.10^-6 by inelastic collisions. To investigate the
thermalization issues in the truncated trap, we measure the free evaporation
rate in the RF-truncated magnetic trap, and deduce the average elastic cross
section for atoms in the 5D4 metastable states, equal to 7.0 10^-16m2.Comment: 9 pages, 10 Figure
Energy End-Use : Industry
The industrial sector accounts for about 30% of the global final energy use and accounts for about 115 EJ of final energy use in 2005. 1Cement, iron and steel, chemicals, pulp and paper and aluminum are key energy intensive materials that account for more than half the global industrial use.
There is a shift in the primary materials production with developing countries accounting for the majority of the production capacity. China and India have high growth rates in the production of energy intensive materials like cement, fertilizers and steel (12–20%/yr). In different economies materials demand is seen to grow initially with income and then stabilize. For instance in industrialized countries consumption of steel seems to saturate at about 500 kg/capita and 400–500 kg/capita for cement.
The aggregate energy intensities in the industrial sectors in different countries have shown steady declines – due to an improvement in energy efficiency and a change in the structure of the industrial output. As an example for the EU-27 the final energy use by industry has remained almost constant (13.4 EJ) at 1990 levels. Structural changes in the economies explain 30% of the reduction in energy intensity with the remaining due to energy efficiency improvements.
In different industrial sectors adopting the best achievable technology can result in a saving of 10–30% below the current average. An analysis of cost cutting measures for motors and steam systems in 2005 indicates energy savings potentials of 2.2 EJ for motors and 3.3 EJ for steam. The payback period for these measures range from less than 9 months to 4 years. A systematic analysis of materials and energy flows indicates significant potential for process integration, heat pumps and cogeneration for example savings of 30% are seen in kraft, sulfite, dairy, chocolate, ammonia, and vinyl chloride.
An exergy analysis (second law of thermodynamics) reveals that the overall global industry efficiency is only 30%. It is clear that there are major energy efficiency improvements possible through research and development (R&D) in next generation processes.
A comparison of energy management policies in different countries and a summary of country experiences, program impacts for Brazil, China, India, South Africa shows the features of successful policies. Energy management International Organization for Standardization (ISO) standards are likely to be effective in facilitating industrial end use efficiency.
The effective use of demand side management can be facilitated by combination of mandated measures and market strategies.
A frozen efficiency scenario is constructed for industry in 2030. This implies a demand of final energy of 225 EJ in 2030. This involves an increase of the industrial energy output (in terms of Manufacturing Value Added (MVA)) by 95% over its 2005 value. Due to normal efficiency improvements the Business as Usual scenario results in a final energy demand of 175 EJ. The savings possibilities in motors and steam systems, process improvements, pinch, heat pumping and cogeneration have been computed for the existing industrial stock and for the new industries. An energy efficient scenario for 2030 has been constructed with a 95% increase in the industrial output with only a 17% increase in the
final energy demand (total final energy demand for industry (135 EJ)). The total direct and indirect carbon dioxide emissions from the industry sector in 2005 is about 9.9 GtCO 2 . Assuming a constant carbon intensity of energy use, the business as usual scenario results in carbon dioxide (CO 2 ) emissions increasing to 17.8 GtCO 2 annually in 2030. In the energy efficient scenario this reduces to 11.6 GtCO 2 . Renewables account for 9% of the final energy of industry (10 EJ in 2005). If an aggressive renewables strategy resulting in an increase in renewable energy supply to 23% in 2030 is targeted (23 EJ), it is possible to have a scenario of constant greenhouse gas (GHG) emissions by the industrial sector
(at 2005 levels) with a 95% increase in the industrial output.
Several interventions will be required to achieve the energy efficient or constant GHG emission scenario. For the existing industry measures include developing capacity for systems assessment for motors, steam systems and pinch analysis, sharing and documentation of best practices, benchmarks and roadmaps for different industry segments, access to low interest finance etc. A new energy management standard has been developed by ISO for energy management in companies. Its adoption will enable industries to systematically monitor and track energy efficiency improvements. In order to level the playing field for energy efficiency a paradigm shift is required with the focus on energy services not on energy supply per se. This requires a re-orientation of energy supply, distribution companies and energy equipment manufacturing companies.
Planning for next generation processes and systems needs the development of long term research agenda and strategic collaborations between industry, academic and research institutions and governments
Effect of hyperbaric stress on yeast morphology: Study by automated image analysis
The effects of hyperbaric stress on the morphology
of Saccharomyces cerevisiae were studied in
batch cultures under pressures between 0.1 MPa and 0.6 MPa and different gas compositions (air, oxygen, nitrogen or carbon dioxide), covering aerobic and anaerobic conditions. A method using automatic image analysis for classification of S. cerevisiae cells based on their morphology was developed and applied to experimental data. Information on cell size distribution and bud
formation throughout the cell cycle is reported. The
results show that the effect of pressure on cell activity strongly depends on the nature of the gas used for pressurization. While nitrogen and air to a maximum of 0.6 MPa of pressure were innocuous to yeast, oxygen and carbon dioxide pressure caused cell inactivation, which was confirmed by the reduction of bud cells with time.
Moreover, a decrease in the average cell size was found for cells exposed for 7.5 h to 0.6 MPa CO2.CAPES and CNPq (Brazil).
Fundação para a Ciência e Tecnologia (Portugal)
Nuclear Skins and Halos in the Mean-Field Theory
Nuclei with large neutron-to-proton ratios have neutron skins, which manifest
themselves in an excess of neutrons at distances greater than the radius of the
proton distribution. In addition, some drip-line nuclei develop very extended
halo structures. The neutron halo is a threshold effect; it appears when the
valence neutrons occupy weakly bound orbits. In this study, nuclear skins and
halos are analyzed within the self-consistent Skyrme-Hartree-Fock-Bogoliubov
and relativistic Hartree-Bogoliubov theories for spherical shapes. It is
demonstrated that skins, halos, and surface thickness can be analyzed in a
model-independent way in terms of nucleonic density form factors. Such an
analysis allows for defining a quantitative measure of the halo size. The
systematic behavior of skins, halos, and surface thickness in even-even nuclei
is discussed.Comment: 22 RevTeX pages, 22 EPS figures included, submitted to Physical
Review
Evidence for an Excess of Soft Photons in Hadronic Decays of Z^0
Soft photons inside hadronic jets converted in front of the DELPHI main
tracker (TPC) in events of qqbar disintegrations of the Z^0 were studied in the
kinematic range 0.2 < E_gamma < 1 GeV and transverse momentum with respect to
the closest jet direction p_T < 80 MeV/c. A clear excess of photons in the
experimental data as compared to the Monte Carlo predictions is observed. This
excess (uncorrected for the photon detection efficiency) is (1.17 +/- 0.06 +/-
0.27) x 10^{-3} gamma/jet in the specified kinematic region, while the expected
level of the inner hadronic bremsstrahlung (which is not included in the Monte
Carlo) is (0.340 +/- 0.001 +/- 0.038) x 10^{-3} gamma/jet. The ratio of the
excess to the predicted bremsstrahlung rate is then (3.4 +/- 0.2 +/- 0.8),
which is similar in strength to the anomalous soft photon signal observed in
fixed target experiments with hadronic beams.Comment: 37 pages, 9 figures, Accepted by Eur. Phys. J.
CP asymmetry in in a general two-Higgs-doublet model with fourth-generation quarks
We discuss the time-dependent CP asymmetry of decay in an
extension of the Standard Model with both two Higgs doublets and additional
fourth-generation quarks. We show that although the Standard Model with
two-Higgs-doublet and the Standard model with fourth generation quarks alone
are not likely to largely change the effective from the decay of
, the model with both additional Higgs doublet and
fourth-generation quarks can easily account for the possible large negative
value of without conflicting with other experimental
constraints. In this model, additional large CP violating effects may arise
from the flavor changing Yukawa interactions between neutral Higgs bosons and
the heavy fourth generation down type quark, which can modify the QCD penguin
contributions. With the constraints obtained from processes
such as and , this model can lead to the
effective to be as large as in the CP asymmetry of .Comment: 13 pages, 5 figures, references added, to appear in Eur.Phys.J.
- …
