34,825 research outputs found

    Spin-resolved optical conductivity of two-dimensional group-VIB transition-metal dichalcogenides

    Full text link
    We present an ab-initio study of the spin-resolved optical conductivity of two-dimensional (2D) group-VIB transition-metal dichalcogenides (TMDs). We carry out fully-relativistic density-functional-theory calculations combined with maximally localized Wannier functions to obtain band manifolds at extremely high resolutions and focus on the photo-response of 2D TMDs to circularly-polarized light in a wide frequency range. We present extensive numerical results for monolayer TMDs involving molybdenum and tungsten combined with sulphur and selenium. Our numerical approach allows us to locate with a high degree of accuracy the positions of the points in the Brillouin zone that are responsible for van Hove singularities in the optical response. Surprisingly, some of the saddle points do not occur exactly along high-symmetry directions in the Brillouin zone, although they happen to be in their close proximity.Comment: 9 pages, 5 figure

    Non-local transport and the Hall viscosity of 2D hydrodynamic electron liquids

    Full text link
    In a fluid subject to a magnetic field the viscous stress tensor has a dissipationless antisymmetric component controlled by the so-called Hall viscosity. We here propose an all-electrical scheme that allows a determination of the Hall viscosity of a two-dimensional electron liquid in a solid-state device.Comment: 12 pages, 4 figure

    A Spinorial Formulation of the Maximum Clique Problem of a Graph

    Get PDF
    We present a new formulation of the maximum clique problem of a graph in complex space. We start observing that the adjacency matrix A of a graph can always be written in the form A = B B where B is a complex, symmetric matrix formed by vectors of zero length (null vectors) and the maximum clique problem can be transformed in a geometrical problem for these vectors. This problem, in turn, is translated in spinorial language and we show that each graph uniquely identifies a set of pure spinors, that is vectors of the endomorphism space of Clifford algebras, and the maximum clique problem is formalized in this setting so that, this much studied problem, may take advantage from recent progresses of pure spinor geometry

    Helicons in Weyl semimetals

    Get PDF
    Helicons are transverse electromagnetic waves propagating in three-dimensional (3D) electron systems subject to a static magnetic field. We present a theory of helicons propagating through a 3D Weyl semimetal. Our approach relies on the evaluation of the optical conductivity tensor from semiclassical Boltzmann transport theory, with the inclusion of certain Berry curvature corrections that have been neglected in the earlier literature (such as the one due to the orbital magnetic moment). We demonstrate that the axion term characterizing the electromagnetic response of Weyl semimetals dramatically alters the helicon dispersion with respect to that in nontopological metals. We also discuss axion-related anomalies that appear in the plasmon dispersion relation.Comment: 5 pages, 1 figur

    Molecular Lines as Diagnostics of High Redshift Objects

    Get PDF
    Models are presented for CO rotational line emission by high redshift starburst galaxies. The influence of the cosmic microwave background on the thermal balance and the level populations of atomic and molecular species is explicitly included. Predictions are made for the observability of starburst galaxies through line and continuum emission between z=5 and z=30. It is found that the Millimeter Array could detect a starburst galaxy with ~10^5 Orion regions, corresponding to a star formation rate of about 30 Mo yr^{-1}, equally well at z=5 or z=30 due to the increasing cosmic microwave background temperature with redshift. Line emission is a potentially more powerful probe than dust continuum emission of very high redshift objects.Comment: 15 pages LaTex, uses aasms4.sty, Accepted by ApJ

    Magnetic hallmarks of viscous electron flow in graphene

    Full text link
    We propose a protocol to identify spatial hallmarks of viscous electron flow in graphene and other two-dimensional viscous electron fluids. We predict that the profile of the magnetic field generated by hydrodynamic electron currents flowing in confined geometries displays unambiguous features linked to whirlpools and backflow near current injectors. We also show that the same profile sheds light on the nature of the boundary conditions describing friction exerted on the electron fluid by the edges of the sample. Our predictions are within reach of vector magnetometry based on nitrogen-vacancy centers embedded in a diamond slab mounted onto a graphene layer.Comment: 5 pages, 6 figure

    A Quantum Many-Body Instability in the Thermodynamic Limit

    Full text link
    Intrinsic decoherence in the thermodynamic limit is shown for a large class of many-body quantum systems in the unitary evolution in NMR and cavity QED. The effect largely depends on the inability of the system to recover the phases. Gaussian decaying in time of the fidelity is proved for spin systems and radiation-matter interaction.Comment: 11 pages, 1 figure. Final version accepted for publication in Modern Physics Letters

    Modulated phases of graphene quantum Hall polariton fluids

    Get PDF
    There is growing experimental interest in coupling cavity photons to the cyclotron resonance excitations of electron liquids in high-mobility semiconductor quantum wells or graphene sheets. These media offer unique platforms to carry out fundamental studies of exciton-polariton condensation and cavity quantum electrodynamics in a regime in which electron-electron interactions are expected to play a pivotal role. Focusing on graphene, we present a theoretical study of the impact of electron-electron interactions on a quantum Hall polariton fluid, that is a fluid of magneto-excitons resonantly coupled to cavity photons. We show that electron-electron interactions are responsible for an instability of graphene integer quantum Hall polariton fluids towards a modulated phase. We demonstrate that this phase can be detected by measuring the collective excitation spectra, which soften at a characteristic wave vector of the order of the inverse magnetic length.Comment: 26+17 pages, 5+3 figure