132 research outputs found

    Neural Network Models of Learning and Categorization in Multigame Experiments

    Get PDF
    Previous research has shown that regret-driven neural networks predict behavior in repeated completely mixed games remarkably well, substantially equating the performance of the most accurate established models of learning. This result prompts the question of what is the added value of modeling learning through neural networks. We submit that this modeling approach allows for models that are able to distinguish among and respond differently to different payoff structures. Moreover, the process of categorization of a game is implicitly carried out by these models, thus without the need of any external explicit theory of similarity between games. To validate our claims, we designed and ran two multigame experiments in which subjects faced, in random sequence, different instances of two completely mixed 2 × 2 games. Then, we tested on our experimental data two regret-driven neural network models, and compared their performance with that of other established models of learning and Nash equilibrium

    Pack light on the move: Exploitation and exploration in a dynamic environment

    Get PDF
    This paper revisits a recent study by Posen and Levinthal (Man Sci 58:587–601, 2012) on the exploration/exploitation tradeoff for a multi- armed bandit problem, where the reward probabilities undergo random shocks. We show that their analysis suffers two shortcomings: it assumes that learning is based on stale evidence, and it overlooks the steady state. We let the learning rule endogenously discard stale evidence, and we perform the long run analyses. The comparative study demonstrates that some of their conclusions must be qualified

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC