457 research outputs found
Synthetic biology and microdevices : a powerful combination
Recent developments demonstrate that the combination of microbiology with micro-and nanoelectronics is a successful approach to develop new miniaturized sensing devices and other technologies. In the last decade, there has been a shift from the optimization of the abiotic components, for example, the chip, to the improvement of the processing capabilities of cells through genetic engineering. The synthetic biology approach will not only give rise to systems with new functionalities, but will also improve the robustness and speed of their response towards applied signals. To this end, the development of new genetic circuits has to be guided by computational design methods that enable to tune and optimize the circuit response. As the successful design of genetic circuits is highly dependent on the quality and reliability of its composing elements, intense characterization of standard biological parts will be crucial for an efficient rational design process in the development of new genetic circuits. Microengineered devices can thereby offer a new analytical approach for the study of complex biological parts and systems. By summarizing the recent techniques in creating new synthetic circuits and in integrating biology with microdevices, this review aims at emphasizing the power of combining synthetic biology with microfluidics and microelectronics
EXPLoRA-web: linkage analysis of quantitative trait loci using bulk segregant analysis
Identification of genomic regions associated with a phenotype of interest is a fundamental step toward solving questions in biology and improving industrial research. Bulk segregant analysis (BSA) combined with high-throughput sequencing is a technique to efficiently identify these genomic regions associated with a trait of interest. However, distinguishing true from spuriously linked genomic regions and accurately delineating the genomic positions of these truly linked regions requires the use of complex statistical models currently implemented in software tools that are generally difficult to operate for non-expert users. To facilitate the exploration and analysis of data generated by bulked segregant analysis, we present EXPLoRA-web, a web service wrapped around our previously published algorithm EXPLoRA, which exploits linkage disequilibrium to increase the power and accuracy of quantitative trait loci identification in BSA analysis. EXPLoRA-web provides a user friendly interface that enables easy data upload and parallel processing of different parameter configurations. Results are provided graphically and as BED file and/or text file and the input is expected in widely used formats, enabling straightforward BSA data analysis. The web server is available at http://bioinformatics.intec.ugent.be/explora-web/
Cis-regulatory module detection using constraint programming
We propose a method for finding CRMs in a set of co-regulated genes. Each CRM consists of a set of binding sites of transcription factors. We wish to find CRMs involving the same transcription factors in multiple sequences. Finding such a combination of transcription factors is inherently a combinatorial problem. We solve this problem by combining the principles of itemset mining and constraint programming. The constraints involve the putative binding sites of transcription factors, the number of sequences in which they co-occur and the proximity of the binding sites. Genomic background sequences are used to assess the significance of the modules. We experimentally validate our approach and compare it with state-of-the-art techniques
Improving the adaptability of simulated evolutionary swarm robots in dynamically changing environments
One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment
SSA-ME Detection of cancer driver genes using mutual exclusivity by small subnetwork analysis
Because of its clonal evolution a tumor rarely contains multiple genomic alterations in the same pathway as disrupting the pathway by one gene often is sufficient to confer the complete fitness advantage. As a result, many cancer driver genes display mutual exclusivity across tumors. However, searching for mutually exclusive gene sets requires analyzing all possible combinations of genes, leading to a problem which is typically too computationally complex to be solved without a stringent a priori filtering, restricting the mutations included in the analysis. To overcome this problem, we present SSA-ME, a network-based method to detect cancer driver genes based on independently scoring small subnetworks for mutual exclusivity using a reinforced learning approach. Because of the algorithmic efficiency, no stringent upfront filtering is required. Analysis of TCGA cancer datasets illustrates the added value of SSA-ME: well-known recurrently mutated but also rarely mutated drivers are prioritized. We show that using mutual exclusivity to detect cancer driver genes is complementary to state-of-the art approaches. This framework, in which a large number of small subnetworks are being analyzed in order to solve a computationally complex problem (SSA), can be generically applied to any problem in which local neighborhoods in a network hold useful information
Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment
We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population
EPSILON: an eQTL prioritization framework using similarity measures derived from local networks
Motivation: When genomic data are associated with gene expression data, the resulting expression quantitative trait loci (eQTL) will likely span multiple genes. eQTL prioritization techniques can be used to select the most likely causal gene affecting the expression of a target gene from a list of candidates. As an input, these techniques use physical interaction networks that often contain highly connected genes and unreliable or irrelevant interactions that can interfere with the prioritization process. We present EPSILON, an extendable framework for eQTL prioritization, which mitigates the effect of highly connected genes and unreliable interactions by constructing a local network before a network-based similarity measure is applied to select the true causal gene. Results: We tested the new method on three eQTL datasets derived from yeast data using three different association techniques. A physical interaction network was constructed, and each eQTL in each dataset was prioritized using the EPSILON approach: first, a local network was constructed using a k-trials shortest path algorithm, followed by the calculation of a network-based similarity measure. Three similarity measures were evaluated: random walks, the Laplacian Exponential Diffusion kernel and the Regularized Commute-Time kernel. The aim was to predict knockout interactions from a yeast knockout compendium. EPSILON outperformed two reference prioritization methods, random assignment and shortest path prioritization. Next, we found that using a local network significantly increased prioritization performance in terms of predicted knockout pairs when compared with using exactly the same network similarity measures on the global network, with an average increase in prioritization performance of 8 percentage points (P < 10(-5))
Associating expression and genomic data using co-occurrence measures
Recent technological evolutions have led to an exponential increase in data in all the omics fields. It is expected that integration of these different data sources, will drastically enhance our knowledge of the biological mechanisms behind genomic diseases such as cancer. However, the integration of different omics data still remains a challenge. In this work we propose an intuitive workflow for the integrative analysis of expression, mutation and copy number data taken from the METABRIC study on breast cancer. First, we present evidence that the expression profile of many important breast cancer genes consists of two modes or regimes', which contain important clinical information. Then, we show how the co-occurrence of these expression regimes can be used as an association measure between genes and validate our findings on the TCGA-BRCA study. Finally, we demonstrate how these co-occurrence measures can also be applied to link expression regimes to genomic aberrations, providing a more complete, integrative view on breast cancer. As a case study, an integrative analysis of the identified MLPH-FOXA1 association is performed, illustrating that the obtained expression associations are intimately linked to the underlying genomic changes
Bacterial networking
A report of the ESF-EMBO Symposium Bacterial Networks (BacNet08), Sant Feliu de Guixols, Spain, 13-18 September 2008
Reverse-engineering transcriptional modules from gene expression data
"Module networks" are a framework to learn gene regulatory networks from
expression data using a probabilistic model in which coregulated genes share
the same parameters and conditional distributions. We present a method to infer
ensembles of such networks and an averaging procedure to extract the
statistically most significant modules and their regulators. We show that the
inferred probabilistic models extend beyond the data set used to learn the
models.Comment: 5 pages REVTeX, 4 figure
- …