5 research outputs found

    High-Pressure Electrides: The Chemical Nature of Interstitial Quasiatoms

    No full text
    Building on our previous chemical and physical model of high-pressure electrides (HPEs), we explore the effects of interaction of electrons confined in crystals but off the atoms, under conditions of extreme pressure. Electrons in the quantized energy levels of voids or vacancies, interstitial quasiatoms (ISQs), effectively interact with each or with other atoms, in ways that are quite chemical. With the well-characterized Na HPE as an example, we explore the ionic limit, ISQs behaving as anions. A detailed comparison with known ionic compounds points to high ISQ charge density. ISQs may also form what appear to be covalent bonds with neighboring ISQs or real atoms, similarly confined. Our study looks specifically at quasimolecular model systems (two ISQs, a Li atom and a one-electron ISQ, a Mg atom and two ISQs), in a compression chamber made of He atoms. The electronic density due to the formation of bonding and antibonding molecular orbitals of the compressed entities is recognizable, and a bonding stabilization, which increases with pressure, is estimated. Finally, we use the computed Mg electride to understand metallic bonding in one class of electrides. In general, the space confined between atoms in a high pressure environment offers up quantized states to electrons. These ISQs, even as they lack centering nuclei, in their interactions with each other and neighboring atoms may show anionic, covalent, or metallic bonding, all the chemical features of an atom

    Striking Effect of Intra- versus Intermolecular Hydrogen Bonding on Zwitterions: Physical and Electronic Properties

    No full text
    We report the synthesis, characterization, and application of novel zwitterions. The zwitterionic structures consist of a positively charged cyanine and negatively charged dienolate moieties, confirmed by experimental observations and theoretical calculations. Single crystal X-ray studies revealed that <b>BIT-(NPh)</b><sub><b>2</b></sub> is a coplanar molecule that forms 1-D chains via π–π interactions. In contrast, <b>BIT-(NHexyl)</b><sub><b>2</b></sub> is a twisted molecule with a dihedral angle of 78° between the charged planes. In charge transport studies, thin films of the flat zwitterion show semiconducting properties, with a hole mobility of 2.1 × 10<sup>–4</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> while the twisted zwitterion is a high resistivity insulator

    Electron Counting and a Large Family of Two-Dimensional Semiconductors

    No full text
    In comparison with conventional semiconductors, most two-dimensional semiconductor (2DSC) materials are dissimilar in structure and composition. Herein, we use electron-counting rules to propose a large family of 2DSCs, which all adopt the same structure and are composed of solely main group elements. Advanced density functional theory calculations are used to predict a number of novel 2DSCs, and we show that they span a large range of lattice constants, band gaps, and band edge states. As a result, they are good candidate materials for heterojunctions. This family of two-dimensional materials may be instrumental in the fabrication of 2DSC devices that may rival the currently employed 3D semiconductors

    Honeycomb Boron Allotropes with Dirac Cones: A True Analogue to Graphene

    No full text
    We propose a series of planar boron allotropes with honeycomb topology and demonstrate that their band structures exhibit Dirac cones at the K point, the same as graphene. In particular, the Dirac point of one honeycomb boron sheet locates precisely on the Fermi level, rendering it as a topologically equivalent material to graphene. Its Fermi velocity (<i>v</i><sub>f</sub>) is 6.05 × 10<sup>5</sup> m/s, close to that of graphene. Although the freestanding honeycomb B allotropes are higher in energy than α-sheet, our calculations show that a metal substrate can greatly stabilize these new allotropes. They are actually more stable than α-sheet sheet on the Ag(111) surface. Furthermore, we find that the honeycomb borons form low-energy nanoribbons that may open gaps or exhibit strong ferromagnetism at the two edges in contrast to the antiferromagnetic coupling of the graphene nanoribbon edges

    Anionic Chemistry of Noble Gases: Formation of Mg–NG (NG = Xe, Kr, Ar) Compounds under Pressure

    No full text
    While often considered to be chemically inert, the reactivity of noble gas elements at elevated pressures is an important aspect of fundamental chemistry. The discovery of Xe oxidation transformed the doctrinal boundary of chemistry by showing that a complete electron shell is not inert to reaction. However, the reductive propensity, i.e., gaining electrons and forming anions, has not been proposed or examined for noble gas elements. In this work, we demonstrate, using first-principles electronic structure calculations coupled to an efficient structure prediction method, that Xe, Kr, and Ar can form thermodynamically stable compounds with Mg at high pressure (≥125, ≥250, and ≥250 GPa, respectively). The resulting compounds are metallic and the noble gas atoms are negatively charged, suggesting that chemical species with a completely filled shell can gain electrons, filling their outermost shell(s). Moreover, this work indicates that Mg<sub>2</sub>NG (NG = Xe, Kr, Ar) are high-pressure electrides with some of the electrons localized at interstitial sites enclosed by the surrounding atoms. Previous predictions showed that such electrides only form in Mg and its compounds at very high pressures (>500 GPa). These calculations also demonstrate strong chemical interactions between the Xe 5d orbitals and the quantized interstitial quasiatom (ISQ) orbitals, including the strong chemical bonding and electron transfer, revealing the chemical nature of the ISQ
    corecore