739 research outputs found

    Diagnosis of choroidal disease with deep learning-based image enhancement and volumetric quantification of optical coherence tomography

    Get PDF
    Purpose: The purpose of this study was to quantify choroidal vessels (CVs) in pathological eyes in three dimensions (3D) using optical coherence tomography (OCT) and a deep-learning analysis. Methods: A single-center retrospective study including 34 eyes of 34 patients (7 women and 27 men) with treatment-naïve central serous chorioretinopathy (CSC) and 33 eyes of 17 patients (7 women and 10 men) with Vogt-Koyanagi-Harada disease (VKH) or sympathetic ophthalmitis (SO) were imaged consecutively between October 2012 and May 2019 with a swept source OCT. Seventy-seven eyes of 39 age-matched volunteers (26 women and 13 men) with no sign of ocular pathology were imaged for comparison. Deep-learning-based image enhancement pipeline enabled CV segmentation and visualization in 3D, after which quantitative vessel volume maps were acquired to compare normal and diseased eyes and to track the clinical course of eyes in the disease group. Region-based vessel volumes and vessel indices were utilized for disease diagnosis. Results: OCT-based CV volume maps disclose regional CV changes in patients with CSC, VKH, or SO. Three metrics, (i) choroidal volume, (ii) CV volume, and (iii) CV index, exhibit high sensitivity and specificity in discriminating pathological choroids from healthy ones. Conclusions: The deep-learning analysis of OCT images described here provides a 3D visualization of the choroid, and allows quantification of features in the datasets to identify choroidal disease and distinguish between different diseases. Translational Relevance: This novel analysis can be applied retrospectively to existing OCT datasets, and it represents a significant advance toward the automated diagnosis of choroidal pathologies based on observations and quantifications of the vasculature

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks