356 research outputs found
On-line Non-stationary Inventory Control using Champion Competition
The commonly adopted assumption of stationary demands cannot actually reflect
fluctuating demands and will weaken solution effectiveness in real practice. We
consider an On-line Non-stationary Inventory Control Problem (ONICP), in which
no specific assumption is imposed on demands and their probability
distributions are allowed to vary over periods and correlate with each other.
The nature of non-stationary demands disables the optimality of static (s,S)
policies and the applicability of its corresponding algorithms. The ONICP
becomes computationally intractable by using general Simulation-based
Optimization (SO) methods, especially under an on-line decision-making
environment with no luxury of time and computing resources to afford the huge
computational burden. We develop a new SO method, termed "Champion Competition"
(CC), which provides a different framework and bypasses the time-consuming
sample average routine adopted in general SO methods. An alternate type of
optimal solution, termed "Champion Solution", is pursued in the CC framework,
which coincides the traditional optimality sense under certain conditions and
serves as a near-optimal solution for general cases. The CC can reduce the
complexity of general SO methods by orders of magnitude in solving a class of
SO problems, including the ONICP. A polynomial algorithm, termed "Renewal Cycle
Algorithm" (RCA), is further developed to fulfill an important procedure of the
CC framework in solving this ONICP. Numerical examples are included to
demonstrate the performance of the CC framework with the RCA embedded.Comment: I just identified a flaw in the paper. It may take me some time to
fix it. I would like to withdraw the article and update it once I finished.
Thank you for your kind suppor
Revisiting the hydrogen storage behavior of the Na-O-H system
Solid-state reactions between sodium hydride and sodium hydroxide are unusual among hydride-hydroxide systems since hydrogen can be stored reversibly. In order to understand the relationship between hydrogen uptake/release properties and phase/structure evolution, the dehydrogenation and hydrogenation behavior of the Na-O-H system has been investigated in detail both ex- and in-situ. Simultaneous thermogravimetric-differential thermal analysis coupled to mass spectrometry (TG-DTA-MS) experiments of NaH-NaOH composites reveal two principal features: Firstly, an H2 desorption event occurring between 240 and 380 °C and secondly an additional endothermic process at around 170 °C with no associated weight change. In-situ high-resolution synchrotron powder X-ray diffraction showed that NaOH appears to form a solid solution with NaH yielding a new cubic complex hydride phase below 200 °C. The Na-H-OH phase persists up to the maximum temperature of the in-situ diffraction experiment shortly before dehydrogenation occurs. The present work suggests that not only is the inter-phase synergic interaction of protic hydrogen (in NaOH) and hydridic hydrogen (in NaH) important in the dehydrogenation mechanism, but that also an intra-phase Hδ+… Hδ– interaction may be a crucial step in the desorption process
A Complexity Indicator for 4D Flight Trajectories Based on Conflict Probability
In this paper, a complexity indicator for 4D flight trajectories is developed
based on conflict probability. A 4D trajectory is modeled as piecewise linear
segments connected by waypoints. The position of each aircraft is modeled as a
2D Gaussian random variable and an approximation of the conflict probability
between two aircraft is deduced analytically over each segment. Based on such
conflict probability, a complexity indicator is constructed for the whole
trajectory. Numerical examples show that the proposed complexity indicator is
able to reflect the complexity of 4D trajectories perceived by air traffic
controllers
- …