11,676 research outputs found
Relativistic Tunneling Through Two Successive Barriers
We study the relativistic quantum mechanical problem of a Dirac particle
tunneling through two successive electrostatic barriers. Our aim is to study
the emergence of the so-called \emph{Generalized Hartman Effect}, an effect
observed in the context of nonrelativistic tunneling as well as in its
electromagnetic counterparts, and which is often associated with the
possibility of superluminal velocities in the tunneling process. We discuss the
behavior of both the phase (or group) tunneling time and the dwell time, and
show that in the limit of opaque barriers the relativistic theory also allows
the emergence of the Generalized Hartman Effect. We compare our results with
the nonrelativistic ones and discuss their interpretation.Comment: 7 pages, 3 figures. Revised version, with a new appendix added.
Slightly changes in the styles and captions of Figures 1 and 2. To appear in
Physical Review
Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures
Sharp metallic nanotapers irradiated with few-cycle laser pulses are emerging
as a source of highly confined coherent electron wavepackets with attosecond
duration and strong directivity. The possibility to steer, control or switch
such electron wavepackets by light is expected to pave the way towards direct
visualization of nanoplasmonic field dynamics and real-time probing of electron
motion in solid state nanostructures. Such pulses can be generated by
strong-field induced tunneling and acceleration of electrons in the near-field
of sharp gold tapers within one half-cycle of the driving laser field. Here, we
show the effect of the carrier-envelope phase of the laser field on the
generation and motion of strong-field emitted electrons from such tips. This is
a step forward towards controlling the coherent electron motion in and around
metallic nanostructures on ultrashort length and time scales
Recommended from our members
Weighted protein interaction network analysis of frontotemporal dementia
The genetic analysis of complex disorders has undoubtedly led to the identification of a wealth of associations between genes and specific traits. However, moving from genetics to biochemistry one gene at a time has, to date, rather proved inefficient and under-powered to comprehensively explain the molecular basis of phenotypes. Here we present a novel approach, weighted protein−protein
interaction network analysis (W-PPI-NA), to highlight key functional players within relevant biological processes associated with a given trait. This is exemplified in the current study by applying W-PPI-NA to frontotemporal dementia (FTD): We first built the state of the art FTD protein network (FTD-PN) and then analyzed both its topological and functional features. The FTD-PN resulted from the sum of the individual interactomes built around FTD-spectrum genes, leading to a total of 4198 nodes. Twenty nine of 4198 nodes, called inter-interactome hubs (IIHs), represented those interactors able to bridge over
60% of the individual interactomes. Functional annotation analysis not only reiterated and reinforced previous findings from single genes and gene-coexpression analyses but also indicated a number of novel potential disease related mechanisms, including DNA damage response, gene expression regulation, and cell waste disposal and potential biomarkers or therapeutic targets including EP300. These processes and targets likely represent the functional core impacted in FTD, reflecting the underlying genetic architecture contributing to disease. The approach presented in this study can be applied to other complex traits for which risk-causative genes are known as it provides a promising tool for setting the foundations for collating genomics and wet laboratory data in a bidirectional manner. This is and will be critical to accelerate molecular target prioritization and drug discovery
The perseverance of Pacioli's goods inventory accounting system
This paper details sources of the 'undoubtedly strange' (Yamey, 1994a, p.119) system of goods inventory records described in Pacioli’s 1494 bookkeeping treatise and traces the longevity and widespread use of this early perpetual inventory recording (EPIR) system in English language texts. By doing so and contrasting this system with the bookkeeping treatment of modern texts, it is shown that the EPIR system persisted as the dominant form of goods inventory accounting for between 400 and 500 years and that the reasons for its demise are worthy of further consideration and research
Childbirth and cohort effects on mother's labour supply:A comparative study using life-history data for Germany, the Netherlands and Great-Britain
Recommended from our members
mTOR independent alteration in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition
Unc-51 Like Kinase 1 (ULK1) is a critical regulator of the biogenesis of autophagosomes, the central component of the catabolic macroautophagy pathway. Regulation of ULK1 activity is dependent upon several phosphorylation events acting to repress or activate the enzymatic function of this protein. Phosphorylation of Ser758 ULK1 has been linked to repression of autophagosome biogenesis and was thought to be exclusively dependent upon mTOR complex 1 kinase activity. In this study, a novel regulation of Ser758 ULK1 phosphorylation is reported following prolonged inhibition of the Parkinson's disease linked protein Leucine Rich Repeat Kinase 2 (LRRK2). Here, modulation of Ser758 ULK1 phosphorylation following LRRK2 inhibition is decoupled from the repression of autophagosome biogenesis and independent of mTOR complex 1 activity
Recommended from our members
Analysis of macroautophagy related proteins in G2019S LRRK2 Parkinson's disease brains with Lewy body pathology
LRRK2, the gene encoding the multidomain kinase Leucine-Rich Repeat Kinase 2 (LRRK2), has been linked to familial and sporadic forms of Parkinson's disease (PD), as well as cancer, leprosy and Crohn's disease, establishing it as a target for discovery therapeutics. LRRK2 has been associated with a range of cellular processes, however its physiological and pathological functions remain unclear. The most prevalent LRRK2 mutations in PD have been shown to affect macroautophagy in various cellular models while a role in autophagy signalling has been recapitulated in vivo. Dysregulation of autophagy has been implicated in PD pathology, and this raises the possibility that differential autophagic activity is relevant to disease progression in PD patients carrying LRRK2 mutations. To examine the relevance of LRRK2 to the regulation of macroautophagy in a disease setting we examined the levels of autophagic markers in the basal ganglia of G2019S LRRK2 PD post-mortem tissue, in comparison to pathology-matched idiopathic PD (iPD), using immunoblotting (IB). Significantly lower levels of p62 and LAMP1 were observed in G2019S LRRK2 PD compared to iPD cases. Similarly, an increase in ULK1 was observed in iPD but was not reflected in G2019S LRRK2 PD cases. Furthermore, examination of p62 by immunohistochemistry (IH) recapitulated a distinct signature for G2019S PD. IH of LAMP1, LC3 and ULK1 broadly correlated with the IB results. Our data from a small but pathologically well-characterized cases highlights a divergence of G2019S PD carriers in terms of autophagic response in alpha-synuclein pathology affected brain regions compared to iPD
Formation of intermetallic delta phase in Al 10Si 0.3Fe alloy investigated by in situ 4D X ray synchrotron tomography
mTOR independent alteration in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition
Unc-51 Like Kinase 1 (ULK1) is a critical regulator of the biogenesis of autophagosomes, the central component of the catabolic macroautophagy pathway. Regulation of ULK1 activity is dependent upon several phosphorylation events acting to repress or activate the enzymatic function of this protein. Phosphorylation of Ser758 ULK1 has been linked to repression of autophagosome biogenesis and was thought to be exclusively dependent upon mTOR complex 1 kinase activity. In this study, a novel regulation of Ser758 ULK1 phosphorylation is reported following prolonged inhibition of the Parkinson's disease linked protein Leucine Rich Repeat Kinase 2 (LRRK2). Here, modulation of Ser758 ULK1 phosphorylation following LRRK2 inhibition is decoupled from the repression of autophagosome biogenesis and independent of mTOR complex 1 activity
- …