309 research outputs found

    Concordance between the Clinical Definition of Polypathological Patient versus Automated Detection by Means of Combined Identification through ICD-9-CM Codes

    Get PDF
    It is unknown whether the digital application of automated ICD-9-CM codes recorded in the medical history are useful for a first screening in the detection of polypathological patients. In this study, the objective was to identify the degree of intra- and inter-observer concordance in the identification of in-patient polypathological patients between the standard clinical identification method and a new automatic method, using the basic minimum data set of ICD-9-CM codes in the digital medical history. For this, a cross-sectional multicenter study with 1518 administratively discharged patients from Andalusian hospitals during the period of 2013–2014 has been carried out. For the concordance between the clinical definition of a polypathological patient and the polypathological patient classification according to ICD-9-CM coding, a 0.661 kappa was obtained (95% confidence interval (CI); 0.622–0.701) with p < 0.0001. The intraclass correlation coefficient between both methods for the number of polypathological patient categories was 0.745 (95% CI; 0.721–0.768; p < 0.0001). The values of sensitivity, specificity, positive-, and negative predictive values of the automated detection using ICD-9-CM coding were 78%, 88%, 78%, and 88%, respectively. As conclusion, the automatic identification of polypathological patients by detecting ICD-9-CM codes is useful as a screening method for in-hospital patients.Instituto de Salud Carlos III PI 14/025

    PresentaciĂłn

    Get PDF
    Se procede a presentar los resultados del proyecto de investigación concedidos por el MICIM bajo el título de "Cerámica y Estilo", que focalizaba su interés en las primeras producciones cerámicas de los grupos neolíticos peninsulares, durante el VI milenio cal AC

    A Multi-Criteria Reference Point Based Approach for Assessing Regional Innovation Performance in Spain

    Full text link
    [EN] The evaluation of regional innovation performance through composite innovation indices can serve as a valuable tool for policy-making. While discussion on the best methodology to construct composite innovation indices continues, we are interested in deepening the use of reference levels and the aggregation issue. So far, additive aggregation methods are, largely, the most widespread aggregation rule, thus allowing for full compensability among single indicators. In this paper, we present an integrated assessment methodology to evaluate regional innovation performance using the Multi-Reference Point based Weak and Strong Composite Indicator (MRP-WSCI) approach, which allows defining reference levels and different degrees of compensability. As an example of application to the Regional Innovation Scoreboard, the proposed technique is developed to measure the innovation performance of Spain¿s regions taking into account Spanish and European reference levels. The main features of the proposed approach are: (i) absolute or relative reference levels could be previously defined by the decision maker; (ii) by establishing the reference levels, the resulting composite innovation index is an easy-to-interpret measure; and (iii) the non-compensatory strong composite indicator provides an additional layer of information for policy-making (iv) a visualization tool called Light-Diagram is proposed to track the specific strengths and weaknesses of the regions' innovation performance.This research has been partially supported by the Spanish Ministry of Economy and Competitiveness (Project ECO2016-76567-C4-4-R), by the Regional Government of Andalucia (research group SEJ-417), and by the ERDF funds (Project UMA18-FEDERJA-065).Garcia-Bernabeu, A.; Cabello, JM.; Ruiz, F. (2020). A Multi-Criteria Reference Point Based Approach for Assessing Regional Innovation Performance in Spain. Mathematics. 8(5):1-21. https://doi.org/10.3390/math8050797S12185Hauser, C., Siller, M., Schatzer, T., Walde, J., & Tappeiner, G. (2018). Measuring regional innovation: A critical inspection of the ability of single indicators to shape technological change. Technological Forecasting and Social Change, 129, 43-55. doi:10.1016/j.techfore.2017.10.019Makkonen, T., & van der Have, R. P. (2012). Benchmarking regional innovative performance: composite measures and direct innovation counts. Scientometrics, 94(1), 247-262. doi:10.1007/s11192-012-0753-2Asheim, B. T., Smith, H. L., & Oughton, C. (2011). Regional Innovation Systems: Theory, Empirics and Policy. Regional Studies, 45(7), 875-891. doi:10.1080/00343404.2011.596701Buesa, M., Heijs, J., & Baumert, T. (2010). The determinants of regional innovation in Europe: A combined factorial and regression knowledge production function approach. Research Policy, 39(6), 722-735. doi:10.1016/j.respol.2010.02.016Di Cagno, D., Fabrizi, A., Meliciani, V., & Wanzenböck, I. (2016). The impact of relational spillovers from joint research projects on knowledge creation across European regions. Technological Forecasting and Social Change, 108, 83-94. doi:10.1016/j.techfore.2016.04.021Capello, R., & Lenzi, C. (2012). Territorial patterns of innovation: a taxonomy of innovative regions in Europe. The Annals of Regional Science, 51(1), 119-154. doi:10.1007/s00168-012-0539-8Navarro, M., Gibaja, J. J., Bilbao-Osorio, B., & Aguado, R. (2009). Patterns of Innovation in EU-25 Regions: A Typology and Policy Recommendations. Environment and Planning C: Government and Policy, 27(5), 815-840. doi:10.1068/c0884rPinto, H. (2009). The Diversity of Innovation in the European Union: Mapping Latent Dimensions and Regional Profiles. European Planning Studies, 17(2), 303-326. doi:10.1080/09654310802553571Ruiz, F., El Gibari, S., Cabello, J. M., & Gómez, T. (2020). MRP-WSCI: Multiple reference point based weak and strong composite indicators. Omega, 95, 102060. doi:10.1016/j.omega.2019.04.003Hollenstein, H. (1996). A composite indicator of a firm’s innovativeness. An empirical analysis based on survey data for Swiss manufacturing. Research Policy, 25(4), 633-645. doi:10.1016/0048-7333(95)00874-8Gu *, W., & Tang, J. (2004). Link between innovation and productivity in Canadian manufacturing industries. Economics of Innovation and New Technology, 13(7), 671-686. doi:10.1080/1043890410001686806Tang, J., & Le, C. D. (2007). Multidimensional Innovation and Productivity. Economics of Innovation and New Technology, 16(7), 501-516. doi:10.1080/10438590600914585Kumar, S., Haleem, A., & Sushil. (2019). Assessing innovativeness of manufacturing firms using an intuitionistic fuzzy based MCDM framework. Benchmarking: An International Journal, 26(6), 1823-1844. doi:10.1108/bij-12-2017-0343Grupp, H., & Mogee, M. E. (2004). Indicators for national science and technology policy: how robust are composite indicators? Research Policy, 33(9), 1373-1384. doi:10.1016/j.respol.2004.09.007Schibany, A., & Streicher, G. (2008). The European Innovation Scoreboard: drowning by numbers? Science and Public Policy, 35(10), 717-732. doi:10.3152/030234208x398512Kozłowski, J. (2015). Innovation indices: the need for positioning them where they properly belong. Scientometrics, 104(3), 609-628. doi:10.1007/s11192-015-1632-4Carayannis, E. G., Goletsis, Y., & Grigoroudis, E. (2018). Composite innovation metrics: MCDA and the Quadruple Innovation Helix framework. Technological Forecasting and Social Change, 131, 4-17. doi:10.1016/j.techfore.2017.03.008Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2018). On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Social Indicators Research, 141(1), 61-94. doi:10.1007/s11205-017-1832-9El Gibari, S., Gómez, T., & Ruiz, F. (2018). Building composite indicators using multicriteria methods: a review. Journal of Business Economics, 89(1), 1-24. doi:10.1007/s11573-018-0902-zRuiz, F., Cabello, J. M., & Luque, M. (2011). An application of reference point techniques to the calculation of synthetic sustainability indicators. Journal of the Operational Research Society, 62(1), 189-197. doi:10.1057/jors.2009.187Cabello, J. M., Ruiz, F., Pérez-Gladish, B., & Méndez-Rodríguez, P. (2014). Synthetic indicators of mutual funds’ environmental responsibility: An application of the Reference Point Method. European Journal of Operational Research, 236(1), 313-325. doi:10.1016/j.ejor.2013.11.031Ruiz, F., Cabello, J. M., & Pérez-Gladish, B. (2018). Building Ease-of-Doing-Business synthetic indicators using a double reference point approach. Technological Forecasting and Social Change, 131, 130-140. doi:10.1016/j.techfore.2017.06.005El Gibari, S., Gómez, T., & Ruiz, F. (2018). Evaluating university performance using reference point based composite indicators. Journal of Informetrics, 12(4), 1235-1250. doi:10.1016/j.joi.2018.10.003Mazziotta, M., & Pareto, A. (2017). Measuring Well-Being Over Time: The Adjusted Mazziotta–Pareto Index Versus Other Non-compensatory Indices. Social Indicators Research, 136(3), 967-976. doi:10.1007/s11205-017-1577-5Munda, G., & Nardo, M. (2009). Noncompensatory/nonlinear composite indicators for ranking countries: a defensible setting. Applied Economics, 41(12), 1513-1523. doi:10.1080/00036840601019364Cabello, J. M., Navarro, E., Prieto, F., Rodríguez, B., & Ruiz, F. (2014). Multicriteria development of synthetic indicators of the environmental profile of the Spanish regions. Ecological Indicators, 39, 10-23. doi:10.1016/j.ecolind.2013.11.01

    A survey on elasticity management in PaaS systems

    Full text link
    [EN] Elasticity is a goal of cloud computing. An elastic system should manage in an autonomic way its resources, being adaptive to dynamic workloads, allocating additional resources when workload is increased and deallocating resources when workload decreases. PaaS providers should manage resources of customer applications with the aim of converting those applications into elastic services. This survey identifies the requirements that such management imposes on a PaaS provider: autonomy, scalability, adaptivity, SLA awareness, composability and upgradeability. This document delves into the variety of mechanisms that have been proposed to deal with all those requirements. Although there are multiple approaches to address those concerns, providers main goal is maximisation of profits. This compels providers to look for balancing two opposed goals: maximising quality of service and minimising costs. Because of this, there are still several aspects that deserve additional research for finding optimal adaptability strategies. Those open issues are also discussed.This work has been partially supported by EU FEDER and Spanish MINECO under research Grant TIN2012-37719-C03-01.Muñoz-Escoí, FD.; Bernabeu Aubán, JM. (2017). A survey on elasticity management in PaaS systems. Computing. 99(7):617-656. https://doi.org/10.1007/s00607-016-0507-8S617656997Ajmani S (2004) Automatic software upgrades for distributed systems. PhD thesis, Department of Electrical and Computer Science, Massachusetts Institute of Technology, USAAjmani S, Liskov B, Shrira L (2006) Modular software upgrades for distributed systems. In: 20th European Conference on Object-Oriented Programming (ECOOP), Nantes, France, pp 452–476Alhamad M, Dillon TS, Chang E (2010) Conceptual SLA framework for cloud computing. In: 4th International Conference on Digital Ecosystems and Technologies (DEST), Dubai, pp 606–610Almeida S, Leitão J, Rodrigues LET (2013) ChainReaction: a causal+ consistent datastore based on chain replication. In: 8th EuroSys Conference, Prague, Czech Republic, pp 85–98Araujo J, Matos R, Maciel PRM, Matias R (2011) Software aging issues on the Eucalyptus cloud computing infrastructure. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), Anchorage, Alaska, USA, pp 1411–1416Arief LB, Speirs NA (2000) A UML tool for an automatic generation of simulation programs. In: Worshop on Software and Performance (WOSP), Ottawa, Canada, pp 71–76Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58Bailis P, Ghodsi A (2013) Eventual consistency today: limitations, extensions, and beyond. Commun ACM 56(5):55–63Bailis P, Ghodsi A, Hellerstein JM, Stoica I (2013) Bolt-on causal consistency. In: Intnl Conf Mgmnt Data (SIGMOD). NY, USA, New York, pp 761–772Balsamo S, Marco AD, Inverardi P, Simeoni M (2004) Model-based performance prediction in software development: a survey. IEEE Trans Softw Eng 30(5):295–310Barham P, Dragovic B, Fraser K, Hand S, Harris TL, Ho A, Neugebauer R, Pratt I, Warfield A (2003) Xen and the art of virtualization. In: 19th ACM Symposium on Operating Systems Principles (SOSP), Bolton Landing, NY, USA, pp 164–177Bennani MN, Menascé DA (2005) Resource allocation for autonomic data centers using analytic performance models. In: 2nd Intnl Conf Auton Comput (ICAC), Seattle, WA, USA, pp 229–240Birman KP (1996) Building Secure and Reliable Network Applications. Manning Publications Co., ISBN 1-884777-29-5Bloom T (1983) Dynamic module replacement in a distributed programming system. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USABloom T, Day M (1993) Reconfiguration and module replacement in Argus: theory and practice. Softw Eng J 8(2):102–108Caballer M, Segrelles Quilis JD, Moltó G, Blanquer I (2015) A platform to deploy customized scientific virtual infrastructures on the cloud. Concurr Comput Pract E 27(16):4318–4329Calatrava A, Romero E, Moltó G, Caballer M, Alonso JM (2016) Self-managed cost-efficient virtual elastic clusters on hybrid cloud infrastructures. Future Gener Comp Syst 61:13–25Calcavecchia NM, Caprarescu BA, Nitto ED, Dubois DJ, Petcu D (2012) DEPAS: a decentralized probabilistic algorithm for auto-scaling. Computing 94(8–10):701–730Casalicchio E, Silvestri L (2013) Mechanisms for SLA provisioning in cloud-based service providers. Comput Netw 57(3):795–810Casalicchio E, Menascé DA, Aldhalaan A (2013) Autonomic resource provisioning in cloud systems with availability goals. In: ACM Cloud Autonomic Computing Conference (CAC), FL, USA, Miami, pp 1–10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE (2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst 26(2):4Copil G, Trihinas D, Truong HL, Moldovan D, Pallis G, Dustdar S, Dikaiakos MD (2014) ADVISE—A framework for evaluating cloud service elasticity behavior. In: 12th International Conference on Service-Oriented Computing (ICSOC), France, Paris, pp 275–290Cotroneo D, Natella R, Pietrantuono R, Russo S (2014) A survey of software aging and rejuvenation studies. ACM J Emerg Technol 10(1):8:1–8:34Coutinho EF, de Carvalho Sousa FR, Rego PAL, Gomes DG, de Souza JN (2015) Elasticity in cloud computing: a survey. Ann Telecommun 70(15):289–309Dawoud W, Takouna I, Meinel C (2011) Elastic VM for cloud resources provisioning optimization. In: 1st International Conference on Advances in Computing and Communications (ACC), Kochi, India, pp 431–445de Juan-Marín R, Decker H, Armendáriz-Íñigo JE, Bernabéu-Aubán JM, Muñoz-EscoíFD (2015) Scalability approaches for causal multicast: a survey. Computing (in press)de Miguel M, Lambolais T, Hannouz M, Betgé-Brezetz S, Piekarec S (2000) UML extensions for the specification and evaluation of latency constraints in architectural models. In: Workshop on Software and Performance (WOSP), Ottawa, Canada, pp 83–88Demers AJ, Greene DH, Hauser C, Irish W, Larson J, Shenker S, Sturgis HE, Swinehart DC, Terry DB (1987) Epidemic algorithms for replicated database maintenance. In: 6th ACM Symposium on Principles of Distributed Computing (PODC), Vancouver, Canada, pp 1–12Dustdar S, Guo Y, Satzger B, Truong HL (2011) Principles of elastic processes. IEEE Internet Comput 15(5):66–71Emeakaroha VC, Brandic I, Maurer M, Dustdar S (2013) Cloud resource provisioning and SLA enforcement via LoM2HiS framework. Concurr Comput Pract E 25(10):1462–1481Felter W, Ferreira A, Rajamony R, Rubio J (2015) An updated performance comparison of virtual machines and Linux containers. In: IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Philadelphia, PA, USA, pp 171–172Fox A, Brewer EA (1999) Harvest, yield and scalable tolerant systems. In: 7th Workshop on Hot Topics in Operating Systems (HotOS), Rio Rico, Arizona, USA, pp 174–178Galante G, De Bona LCE (2012) A survey on cloud computing elasticity. In: 5th International Conference on Utility and Cloud Computing (UCC), Chicago, IL, USA, pp 263–270Galante G, De Bona LCE, Mury AR, Schulze B, Righi RR (2016) An analysis of public clouds elasticity in the execution of scientific applications: a survey. J Grid Comput 14(2):193–216Gambi A, Hummer W, Truong HL, Dustdar S (2013) Testing elastic computing systems. IEEE Internet Comput 17(6):76–82Garg S, van Moorsel APA, Vaidyanathan K, Trivedi KS (1998) A methodology for detection and estimation of software aging. In: 9th International Symposium on Software Reliability Engineering (ISSRE), Paderborn, Germany, pp 283–292Gey F, Landuyt DV, Joosen W (2015) Middleware for customizable multi-staged dynamic upgrades of multi-tenant SaaS applications. In: 8th IEEE/ACM International Conference on Utility and Cloud Computing (UCC), Limassol, Cyprus, pp 102–111Gilbert S, Lynch NA (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News 33(2):51–59Gong Z, Gu X, Wilkes J (2010) PRESS: PRedictive Elastic reSource Scaling for cloud systems. In: 6th International Conference on Network and Service Management (CNSM), Niagara Falls, Canada, pp 9–16Grozev N, Buyya R (2014) Inter-cloud architectures and application brokering: taxonomy and survey. Softw Pract Exp 44(3):369–390Hammer M (2009) How to touch a running system. reconfiguration of stateful components. PhD thesis, Facultät für Mathematik, Informatik und Statistik, Ludwig-Maximilians-Universität München, Munich, GermanyHasan MZ, Magana E, Clemm A, Tucker L, Gudreddi SLD (2012) Integrated and autonomic cloud resource scaling. In: IEEE Network Operations and Management Symposium (NOMS), Maui, HI, USA, pp 1327–1334Herbst NR, Kounev S, Reussner R (2013) Elasticity in cloud computing: What it is, and what it is not. In: 10th International Conference on Autonomic Computing (ICAC), San Jose, CA, USA, pp 23–27Hermanns H, Herzog U, Katoen J (2002) Process algebra for performance evaluation. Theor Comput Sci 274(1–2):43–87Horn P (2001) Autonomic computing: IBM’s perspective on the state of information technology. Tech. rep. IBM PressHuebscher MC, McCann JA (2008) A survey of autonomic computing—degrees, models, and applications. ACM Comput Surv 40(3):7Hwang J, Zeng S, Wu F, Wood T (2013) A component-based performance comparison of four hypervisors. In: International Symposium on Integrated Network Management (IM), Ghent, Belgium, pp 269–276IBM (2006) An architectural blueprint for autonomic computing. White paper, 4th edIosup A, Ostermann S, Yigitbasi N, Prodan R, Fahringer T, Epema DHJ (2011) Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans Parallel Distrib Syst 22(6):931–945Ivanovic D, Carro M, Hermenegildo MV (2013) A sharing-based approach to supporting adaptation in service compositions. Computing 95(6):453–492Jiang Y, Perng C, Li T, Chang RN (2011) ASAP: A self-adaptive prediction system for instant cloud resource demand provisioning. In: 11th International Conference on Data Mining (ICDM), Vancouver, Canada, pp 1104–1109Johnson PR, Thomas RH (1975) The maintenance of duplicate databases. RFC 677, Network Working Group, Internet Engineering Task ForceKephart JO, Chess DM (2003) The vision of autonomic computing. IEEE Comput 36(1):41–50Kiviti A, Laor D, Costa G, Enberg P, Har’El N, Marti D, Zolotarov V (2014) OSv—Optimizing the operating system for virtual machines. In: USENIX Annual Technical Conference (ATC), Philadelphia, PA, USA, pp 61–72Knauth T, Fetzer C (2011) Scaling non-elastic applications using virtual machines. In: IEEE International Conference on Cloud Computing (CLOUD), Washington, DC, USA, pp 468–475Knauth T, Fetzer C (2014) DreamServer: truly on-demand cloud services. In: International Conference on Systems and Storage (SYSTOR), Haifa, Israel, pp 1–11Kramer J, Magee J (1990) The evolving philosophers problem: dynamic change management. IEEE Trans Softw Eng 16(11):1293–1306Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system. Oper Syst Rev 44(2):35–40Lang W, Shankar S, Patel JM, Kalhan A (2014) Towards multi-tenant performance SLOs. IEEE Trans Knowl Data Eng 26(6):1447–1463Langner F, Andrzejak A (2013) Detecting software aging in a cloud computing framework by comparing development versions. In: IFIP/IEEE International Symposium on Integrated Network Management (IM), Ghent, Belgium, pp 896–899Lazowska ED, Zahorjan J, Graham GS, Sevcik KC (1984) Quantitative system performance. Computer system analysis using queueing network models. Prentice Hall, Upper Saddle RiverLeitner P, Michlmayr A, Rosenberg F, Dustdar S (2010) Monitoring, prediction and prevention of SLA violations in composite services. In: IEEE International Conference on Web Services (ICWS), Florida, USA, Miami, pp 369–376Li W (2011) Evaluating the impacts of dynamic reconfiguration on the QoS of running systems. J Syst Softw 84(12):2123–2138Lim HC, Babu S, Chase JS, Parekh SS (2009) Automated control in cloud computing: challenges and opportunities. In: 1st ACM Workshop Automated Control Datacenters Clouds (ACDC), Barcelona, Spain, pp 13–18Liu J, Zhou J, Buyya R (2015) Software rejuvenation based fault tolerance scheme for cloud applications. In: 8th IEEE International Conference on Cloud Computing (CLOUD), New York City, NY, USA, pp 1115–1118Lorido-Botran T, Miguel-Alonso J, Lozano JA (2014) A review of auto-scaling techniques for elastic applications in cloud environments. J Grid Comput 12(4):559–592Massie M, Li B, Nicholes B, Vuksan V, Alexander R, Buchbinder J, Costa F, Dean A, Josephsen D, Phaal P, Pocock D (2012) Monitoring with Ganglia. O’Reilly Media, Tracking Dynamic Host and Application Metrics at Scale. ISBN 978-1-4493-2970-9Matias R Jr, Andrzejak A, Machida F, Elias D, Trivedi KS (2014) A systematic differential analysis for fast and robust detection of software aging. In: 33rd IEEE Symposium on Reliable Distributed Systems (SRDS). Nara, Japan, pp 311–320Medina V, García JM (2014) A survey of migration mechanisms of virtual machines. ACM Comput Surv 46(3):30Mell P, Grance T (2011) The NIST definition of cloud computing. Recommendations of the National Institute of Standards and Technology, Special Publication 800-145Menascé DA, Bennani MN (2006) Autonomic virtualized environments. In: International Conference on Autonomic and Autonomous Systems (ICAS), Silicon Valley, California, USA, p 28Menascé DA, Ngo P (2009) Understanding cloud computing: Experimentation and capacity planning. In: 35th International Computer Measurement Group Conference, Dallas, TX, USAMenascé DA, Ruan H, Gomaa H (2007) QoS management in service-oriented architectures. Perform Eval 64(7–8):646–663Miedes E, Muñoz-Escoí FD (2010) Dynamic switching of total-order broadcast protocols. In: International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), Las Vegas, Nevada, USA, pp 457–463Mohamed M (2014) Generic monitoring and reconfiguration for service-based applications in the cloud. PhD thesis, Université d’Evry-Val d’Essonne, FranceMohamed M, Amziani M, Belaïd D, Tata S, Melliti T (2015) An autonomic approach to manage elasticity of business processes in the cloud. Future Gener Comp Sys 50(C):49–61Mohd Yusoh ZI (2013) Composite SaaS resource management in cloud computing using evolutionary computation. PhD thesis, Sc Eng Faculty, Queensland University of Technology, Brisbane, AustraliaMontero RS, Moreno-Vozmediano R, Llorente IM (2011) An elasticity model for high throughput computing clusters. J Parallel Distrib Comput 71(6):750–757Morabito R, Kjällman J, Komu M (2015) Hypervisors vs. lightweight virtualization: a performance comparison. In: IEEE International Conference on Cloud Engineering (IC2E), Tempe, AZ, USA, pp 386–393Najjar A, Serpaggi X, Gravier C, Boissier O (2014) Survey of elasticity management solutions in cloud computing. In: Mahmood Z (ed) Continued rise of the cloud: advances and trends in cloud computing. Springer, Berlin, pp 235–263Naskos A, Gounaris A, Sioutas S (2015) Cloud elasticity: a survey. In: 1st International Workshop on Algorithmic Aspects of Cloud Computing (ALGOCLOUD), Patras, Greece, pp 151–167Neamtiu I, Dumitras T (2011) Cloud software upgrades: challenges and opportunities. In: IEEE International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), Williamsburg, VA, USA, pp 1–10Neuman BC (1994) Scale in distributed systems. In: Singhal M, Casavant TL (eds) Readings in Distributed computing systems. IEEE-CS Press, Los Alamitos, pp 463–489Padala P, Shin KG, Zhu X, Uysal M, Wang Z, Singhal S, Merchant A, Salem K (2007) Adaptive control of virtualized resources in utility computing environments. In: EuroSys Conference Lisbon, Portugal, pp 289–302Parnas DL (1994) Software aging. In: 6th International Conference on Software Engineering (ICSE), Sorrento, Italy, pp 279–287Parzen E (1960) A survey on time series analysis. Tech. rep., n. 37, Applied Mathematics and Statistics Laboratory, Stanford University, Stanford, CA, USAPascual-Miret L, González de Mendívil JR, Bernabéu-Aubán JM, Muñoz-Escoí FD (2015) Widening CAP consistency. Tech. rep., IUMTI-SIDI-2015/003, Univ. Politècnica de València, Valencia, SpainPopek GJ, Goldberg RP (1974) Formal requirements for virtualizable third generation architectures. Commun ACM 17(7):412–421Potter S, Nieh J (2005) AutoPod: Unscheduled system updates with zero data loss. In: 2nd International Conference on Autonomic Computing (ICAC), Seattle, WA, USA, pp 367–368Rajagopalan S (2014) System support for elasticity and high availability. PhD thesis, The University of British Columbia, Vancouver, CanadaReinecke P, Wolter K, van Moorsel APA (2010) Evaluating the adaptivity of computing systems. Perform Eval 67(8):676–693Rolia JA, Sevcik KC (1995) The method of layers. IEEE Trans Softw Eng 21(8):689–700Roy N, Dubey A, Gokhale AS (2011) Efficient autoscaling in the cloud using predictive models for workload forecasting. In: 4th IEEE International Conference on Cloud Computing (CLOUD), Washington, DC, USA, pp 500–507Ruiz-Fuertes MI, Muñoz-Escoí FD (2009) Performance evaluation of a metaprotocol for database replication adaptability. In: 28th IEEE Symposium on Reliable Distributed Systems (SRDS), Niagara Falls, New York, USA, pp 32–38Saito Y, Shapiro M (2005) Optimistic replication. ACM Comput Surv 37(1):42–81Seifzadeh H, Abolhassani H, Moshkenani MS (2013) A survey of dynamic software updating. J Softw Evol Process 25(5):535–568Sharma U, Shenoy PJ, Sahu S, Shaikh A (2011) A cost-aware elasticity provisioning system for the cloud. In: International Conference on Distributed Computing Systems (ICDCS), Minneapolis, Minnesota, USA, pp 559–570Shen M, Kshemkalyani AD, Hsu TY (2015) Causal consistency for geo-replicated cloud storage under partial replication. In: International Parallel and Distributed Processing Symposium (IPDPS) Workshop, Hyderabad, India, pp 509–518Shen Z, Subbiah S, Gu X, Wilkes J (2011) CloudScale: elastic resource scaling for multi-tenant cloud systems. In: ACM Symposium on Cloud Computing (SOCC), Cascais, Portugal, p 5Simoes R, Kamienski CA (2014) Elasticity management in private and hybrid clouds. In: 7th IEEE International Conference on Cloud Computing (CLOUD), Anchorage, AK, USA, pp 793–800Singh S, Chana I (2015) QoS-aware autonomic resource management in cloud computing: a systematic review. ACM Comput Surv 48(3):42:1–42:46Smith CU (1980) The prediction and evaluation of the performance of software from extended design specifications. PhD thesis, Department of Computer Science, The University of Texas at Austin, USASmith CU, Williams LG (2003) Software performance engineering. In: Lavagno L, Martin G, Selic B (eds) UML for real. Design of embedded real-time systems, chap 16. Springer, Berlin, pp 343–365Solarski M (2004) Dynamic upgrade of distributed software components. PhD thesis, Fakultät IV Elektronik und Informatik, Technischen Universität Berlin, Berlin, GermanySoltesz S, Pötzl H, Fiuczynski ME, Bavier AC, Peterson LL (2007) Container-based operating system virtualization: a scalable, high-performance alternative to hypervisors. In: European Conference, Lisbon, Portugal, pp 275–287Soules CAN, Appavoo J, Hui K, Wisniewski RW, Silva DD, Ganger GR, Krieger O, Stumm M, Auslander MA, Ostrowski M, Rosenburg BS, Xenidis J (2003) System support for online reconfiguration. In: USENIX Annual Technical Conference. San Antonio, Texas, USA, pp 141–154Sridharan S (2012) A performance comparison of hypervisors for cloud computing. Master Thesis (paper 269), School of Computing, University of North Florida, USAStonebraker M (1986) The case for shared nothing. IEEE Database Eng Bull 9(1):4–9Sun D, Guimarans D, Fekete A, Gramoli V, Zhu L (2015) Multi-objective optimisation of rolling upgrade allowing for failures in clouds. In: 34th IEEE Symposium on Reliable Distributed Systems (SRDS). Montreal, QC, Canada, pp 68–73Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. The MIT Press, CambridgeToosi AN, Calheiros RN, Buyya R (2014) Interconnected cloud computing environments: challenges, taxonomy, and survey. ACM Comput Surv 47(1):7:1–7:47Vaquero González LM, Rodero-Merino L, Cáceres J, Lindner MA (2009) A break in the clouds: towards a cloud definition. Comput Commun Rev 39(1):50–55Varrette S, Guzek M, Plugaru V, Besseron X, Bouvry P (2013) HPC performance and energy-efficiency of Xen, KVM and VMware hypervisors. In: 25th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). Porto de Galinhas, Pernambuco, Brazil, pp 89–96Vasic N, Novakovic DM, Miucin S, Kostic D, Bianchini R (2012) DejaVu: accelerating resource allocation in virtualized environments. In: 17th nternational Conference on Architectural Support for Programing Languages and Operating Systems (ASPLOS), London, UK, pp 423–436Vaughan-Nichols SJ (2006) New approach to virtualization is a lightweight. IEEE Comput 39(11):12–14Vogels W (2009) Eventually consistent. Commun ACM 52(1):40–44Wada H, Suzuki J, Yamano Y, Oba K (2011) Evolutionary deployment optimization for service-oriented clouds. Softw Pract Exp 41(5):469–493Whitaker A, Cox RS, Shaw M, Gribble SD (2005) Rethinking the design of virtual machine monitors. IEEE Comput 38(5):57–62Wishart DMG (1969) A survey of control theory. J R Stat Soc Ser A-G 132(3):293–319Yataghene L, Amziani M, Ioualalen M, Tata S (2014) A queuing model for business processes elasticity evaluation. In: International Workshop on Advanced Information Systems for Enterprises (IWAISE), Tunis, Tunisia, pp 22–28Zawirski M, Preguiça N, Duarte S, Bieniusa A, Balegas V, Shapiro M (2015) Write fast, read in th

    A Reference Point-Based Proposal to Build Regional Quality of Life Composite Indicators

    Full text link
    [EN] There is a growing interest in research on the role that space plays in defining and measuring well-being or quality of life. In this paper, we propose to evaluate the regional quality of life using the Multi-Reference Point based Weak Strong Composite Indicator approach, to further enhance the quality of the sub-national analysis. The major motivation is to facilitate assessing the regional quality of life performance at different geographical scales and compensability levels. As an example of application, we compute the composite indicators for 19 Spanish regions to paint a comprehensive picture of the regional quality of life using two different geographical scales: the Spanish and the European ones. Moreover, we provide warning signals to regional, national and European policy-makers on the quality of life dimensions in which each region needs further improvements.This research was partially funded by the Spanish Ministry of Economy and Competitiveness (Project PID2019-104263RB-C42), from the Regional Government of Andalucía (Project P18-RT-1566), and by the EU ERDF operative program (Project UMA18-FEDERJA-065)Garcia-Bernabeu, A.; Cabello, JM.; Ruiz, F. (2021). A Reference Point-Based Proposal to Build Regional Quality of Life Composite Indicators. Social Indicators Research (Online). 1-20. https://doi.org/10.1007/s11205-021-02818-0S120Blancas, F., Caballero, R., González, M., Lozano-Oyola, M., & Pérez, F. (2010). Goal programming synthetic indicators: An application for sustainable tourism in andalusian coastal counties. Ecological Economics, 69(11), 2158–2172.Boggia, A., Massei, G., Pace, E., Rocchi, L., Paolotti, L., & Attard, M. (2018). Spatial multicriteria analysis for sustainability assessment: A new model for decision making. Land Use Policy, 71, 281–292.Booysen, F. (2002). An overview and evaluation of composite indices of development. Social Indicators Research, 59(2), 115–151.Cabello, J. M., Ruiz, F., Pérez-Gladish, B., & Méndez-Rodríguez, P. (2014). Synthetic indicators of mutual fund’s environmental responsibility: An application of the Reference Point Method. European Journal of Operational Research, 236(1), 313–325.Costa, D. S. (2015). Reflective, causal, and composite indicators of quality of life: A conceptual or an empirical distinction? Quality of Life Research, 24(9), 2057–2065.Durand, M. (2015). The OCDE better life initiative: How’s life? and the measurement of well-being. Review of Income and Wealth, 61(1), 4–17.El Gibari, S., Cabello, J. M., Gómez, T., & Ruiz, F. (2021). Composite indicators as decision making tools: The joint use of compensatory and non-compensatory schemes. International Journal of Information Technology and Decision Making, 20(3), 847–879.El Gibari, S., Gómez, T., & Ruiz, F. (2018). Evaluating university performance using reference point based composite indicators. Journal of Informetrics, 12(4), 1235–1250.El Gibari, S., Gómez, T., & Ruiz, F. (2019). Building composite indicators using multicriteria methods: A review. Journal of Business Economics, 89(1), 1–24.European Commission: Eurostat quality of life database. (2020). url http://ec.europa.eu/eurostat/data/database.Freudenberg, M. (2003). Composite indicators of country performance.Garcia-Bernabeu, A., Cabello, J. M., & Ruiz, F. (2020). A multi-criteria reference point based approach for assessing regional innovation performance in Spain. Mathematics, 8(5), 797.Goerlich, F. J., & Reig, E. (2021). Quality of life ranking of spanish cities: A non-compensatory approach. Cities, 109, 102979.Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2018). On the methodological framework of composite indices: A review of the issues of weighting, aggregation, and robustness. Social Indicators Research, 141, 61–94.Greyling, T., & Tregenna, F. (2017). Construction and analysis of a composite quality of life index for a region of South Africa. Social Indicators Research, 131(3), 887–930.Hagerty, M. R., Cummins, R., Ferriss, A. L., Land, K., Michalos, A. C., Peterson, M., et al. (2001). Quality of life indexes for national policy: Review and agenda for research. Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique, 71(1), 58–78.INE: Indicadores de calidad de vida. (2020). url https://cutt.ly/Zj0L0qX.Ivaldi, E., Bonatti, G., Soliani, R., et al. (2014). Composite index for quality of life in italian cities: An application to urbes indicators. Review of Economics and Finance, 4(4)Karagiannis, R., & Karagiannis, G. (2020). Constructing composite indicators with shannon entropy: The case of human development index. Socio-Economic Planning Sciences, 70, 100701.Lagas, P., van Dongen, F., van Rijn, F., & Visser, H. (2015). Regional quality of living in Europe. Region, 2(2), 1–26.Malkina-Pykh, I. G., & Pykh, Y. A. (2008). Quality-of-life indicators at different scales: Theoretical background. Ecological Indicators, 8(6), 854–862.Marchante, A. J., & Ortega, B. (2006). Quality of life and economic convergence across Spanish regions, 1980–2001. Regional Studies, 40(5), 471–483.Mazziotta, M., & Pareto, A. (2016). On a generalized non-compensatory composite index for measuring socio-economic phenomena. Social Indicators Research, 127(3), 983–1003.Mazziotta, M., & Pareto, A. (2020). Composite indices construction: The performance interval approach. Social Indicators Research pp. 1–11.Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A., & Giovannini, E. (2008). Handbook on constructing composite indicators.OECD: Handbook on constructing composite indicators: methodology and user guide. (2008). Paris: OECD publishing.Patil, G.R., & Sharma, G. (2020). Urban quality of life: An assessment and ranking for indian cities. Transport Policy.Royuela, V., Suriñach, J., & Reyes, M. (2003). Measuring quality of life in small areas over different periods of time. Social Indicators Research, 64(1), 51–74.Ruiz, F., Cabello, J. M., & Luque, M. (2011). An application of reference point techniques to the calculation of synthetic sustainability indicators. Journal of the Operational Research Society, 62(1), 189–197.Ruiz, F., Cabello, J. M., & Pérez-Gladish, B. (2018). Building ease-of-doing-business synthetic indicators using a double reference point approach. Technological Forecasting and Social Change, 131, 130–140.Ruiz, F., El Gibari, S., Cabello, J.M., & Gómez, T. (2019). MRP-WSCI: Multiple reference point based weak and strong composite indicators. Omega.Saisana, M., & Tarantola, S. (2002). State-of-the-art report on current methodologies and practices for composite indicator development. Ispra: Joint Research Centre.Stiglitz, J.E., Sen, A., Fitoussi, J.P., et al. (2009). Report by the commission on the measurement of economic performance and social progress

    Aumento de dosis génica de los genes DPL1, SSD1 y SRP101 en Saccharomyces cerevisiae y fenotipo de tolerancia a acidificación intracelular

    Full text link
    [ES] El pH alto intracelular es una señal promotora del crecimiento y proliferación de las células pero sus mecanismos no son bien conocidos. En un trabajo previo se había identificado una región genómica de levadura que al ser transformada en plásmido de copia simple aumenta el crecimiento de la levadura en condiciones de acidificación intracelular. Esta región contiene tres genes, DPL1, SSD1 y SRP101 y en este trabajo hemos identificado el gen SSD1 como el responsable del fenotipo de pH. Este gen codifica un regulador del crecimiento de la levadura que coopera con otros reguladores importantes como la proteína kinasa TORC1 y la proteína fosfatasa Sit4. El mecanismo de Ssd1 se basa en unir y estabilizar RNA mensajeros de ciclinas y el alelo clonado es la forma activa del gen presente en levaduras silvestres, mientras que las cepas de laboratorio poseen una forma truncada inactiva. Ssd1 también mejora el crecimiento en condiciones normales, sin estrés ácido, en medio con amonio pero no en medio con aminoácidos como fuente de nitrógeno. Como los aminoácidos y el pH alto activan TORC1, podemos sugerir que Ssd1 aumenta la expresión de ciclinas cuando TORC1 no está completamente activado por pH alto o por aminoácidos.[EN] Intracellular pH is a signal promoting cell growth and proliferation by poorly known mechanisms. In previous work, a yeast genomic region was identified that by transformation in single copy plasmid improves yeast growth under conditions of intracellular acidification. This region contains three genes, DPL1, SSD1 and SRP101, and in the present work we have identified SSD1 as the one responsible of the pH phenotype. This gene encodes a regulator of yeast growth that cooperates with other important regulators such as the protein kinase TORC1 and the protein phosphatase Sit4. The mechanism of Ssd1 consists on binding and stabilizing of cyclin mRNAs and the cloned allele is the active form present in wild yeast while laboratory strains express a truncated, inactive form. Ssd1 also improves growth under normal conditions, without pH stress, in media with ammonia but not in media with amino acids as nitrogen source. As amino acids and high pH activate TORC1, it may be suggested that Ssd1 increases cyclin expression when TORC1 is not fully activated by either high pH or amino acidsBernabeu Lorenzo, M. (2015). Aumento de dosis génica de los genes DPL1, SSD1 y SRP101 en Saccharomyces cerevisiae y fenotipo de tolerancia a acidificación intracelular. http://hdl.handle.net/10251/54365.TFG

    Automatic parameter tuning for functional regionalization methods

    Get PDF
    The methods used to define functional regions for public statistics and policy purposes need to establish several parameter values. This is typically achieved using expert knowledge based on qualitative judgements and lengthy consultations with local stakeholders. We propose to support this process by using an optimization algorithm to calibrate any regionalization method by identifying the parameter values that produce the best regionalization for a given quantitative indicator. The approach is exemplified by using a grid search and a genetic algorithm to configure the official methods employed in the UK and Sweden for the definition of their respective official concepts of local labour markets.Los métodos utilizados para definir las regiones funcionales con fines de estadística y políticas públicas deben establecer una serie de valores de ciertos parámetros. Esto se logra generalmente utilizando conocimiento experto basado en juicios cualitativos y largas consultas con las partes interesadas locales. Se propone apoyar este proceso utilizando un algoritmo de optimización para calibrar los métodos de regionalización mediante la identificación de los valores de los parámetros que producen la mejor regionalización para un determinado indicador cuantitativo. El enfoque se ejemplifica mediante el uso de una búsqueda por cuadrículas y un algoritmo genético para configurar los métodos oficiales empleados en el Reino Unido y en Suecia para la definición de sus respectivos conceptos oficiales de los mercados laborales locales.This work was supported by the Spanish Ministry of Economy and Competitiveness (grant numbers CSO2011-29943-C03-02 and CSO2014-55780-C3-2-P, National R&D&i Plan)

    The Feminine Section in the vaccination campaigns of the first Francoism: the case of the province of Valencia (1941-1958)

    Get PDF
    El objetivo del trabajo es analizar la participación de las enfermeras sociales y las divulgadoras rurales de Sección Femenina (S.F.) en las campañas de vacunación del primer franquismo. Material y Métodos: Como principal fuente documental se han utilizado los legajos depositados en el Archivo del Reino de Valencia (A.R.V.), y en concreto los correspondientes a la Sección Femenina Inventario (S.F.I.) (1940-1977). Resultados: las actividades de vacunación en las que participó S.F. fueron poco uniformes y constantes, decrecieron a medida que transcurrían los años, y mostraron importantes desigualdades territoriales. En el intento por superar las resistencias de la población a vacunarse, las enfermeras sociales y divulgadoras rurales desarrollaron actividades de educación sanitaria que estuvieron informadas por el paternalismo asistencial y el adoctrinamiento ideológico de S.F. Conclusiones: el ejemplo de las campañas de vacunación ha puesto de manifiesto las limitaciones y la dificultades que encontró S.F. para alcanzar en la provincia de Valencia sus objetivos socio-sanitarios.The aim of this study was to analyse the participation of health visitors and rural educators belonging to the Women’s Section of the Falange (WS) in vaccination campaigns during the first stage of the Franco regime. Material and Methods: The main source of information consulted was the collection of files deposited in the Archives of the Kingdom of Valencia (Spanish initials: A.R.V), and more specifically, those corresponding to the Inventory of the Women’s Section (1940-1977). Results: the participation of the WS in vaccination campaigns was uneven and sporadic, diminished over the years and presented major regional variations. In an attempt to overcome the population’s resistance to vaccination, health visitors and rural educators implemented health education activities, which were informed by the welfare paternalism and ideological indoctrination of the WS. Conclusions: the example of these vaccination campaigns highlights the limitations and difficulties that the WS encountered in achieving their social and health goals in the province of Valencia

    Monitoring and Prevention the Smart Cities

    Get PDF
    Nowadays, the intensive use of Technology Information (TI) provide solutions to problems of the high population density, energy conservation and cities management. This produces a newest concept of the city, Smart City. But the inclusion of TI in the city brings associated new problems, specifically the generation of electromagnetic fields from the available and new technological infrastructures installed in the city that did not exist before. This new scenario produces a negative effect on a particular group of the society, as are the group of persons with electromagnetic hypersensitivity pathology. In this work we propose a system that would allow you to detect and prevent the continuous exposure to such electromagnetic fields, without the need to include more devices or infrastructure which would only worsen these effects. Through the use of the architecture itself and Smart City services, it is possible to infer the necessary knowledge to know the situation of the EMF radiation and thus allow users to avoid the areas of greatest conflict. This knowledge, not only allows us to get EMF current map of the city, but also allows you to generate predictions and detect future risk situations.This work has been performed within project Smart University funded from the Vice President office for Information Technology at the University of Alicante

    Smart Sentinel: Monitoring and Prevention System in the Smart Cities

    Get PDF
    Today, faced with the constant rise of the Smart cities around the world, there is an exponential increase of the use and deployment of information technologies in the cities. The intensive use of Information Technology (IT) in these ecosystems facilitates and improves the quality of life of citizens, but in these digital communities coexist individuals whose health is affected developing or increasing diseases such as electromagnetic hypersensitivity. In this paper we present a monitoring, detection and prevention system to help this group, through which it is reported the rates of electromagnetic radiation in certain areas, based on the information that the own Smart City gives us. This work provides a perfect platform for the generation of predictive models for detection of future states of risk for humans.This work has been performed within project Smart University funded from the Vice President office for Information Technology at the University of Alicante
    • …
    corecore