3,124 research outputs found

    Moments of generalized parton distribution functions and the nucleon spin contents

    Full text link
    It is shown that, based only on two empirically known facts besides two reasonable theoretical postulates, we are inevitably led to a conclusion that the quark orbital angular momentum carries nearly half of the total nucleon spin. We also perform a model analysis to find that the quark spin fraction ΔΣ\Delta \Sigma is extremely sensitive to the pion mass, which may resolve the discrepancy between the observation and the prediction of the recent lattice QCD simulation carried out in the heavy pion region.Comment: LaTeX, 8 pages, 1 figur

    Chiral odd GPDs in transverse and longitudinal impact parameter spaces

    Full text link
    We investigate the chiral odd generalized parton distributions (GPDs) for non-zero skewness ζ\zeta in transverse and longitudinal position spaces by taking Fourier transform with respect to the transverse and longitudinal momentum transfer respectively. We present overlap formulas for the chiral-odd GPDs in terms of light-front wave functions (LFWFs) of the proton both in the ERBL and DGLAP regions. We calculate them in a field theory inspired model of a relativistic spin 1/2 composite state with the correct correlation between the different LFWFs in Fock space, namely that of the quantum fluctuations of an electron in a generalized form of QED. We show the spin-orbit correlation effect of the two-particle LFWF as well as the correlation between the constituent spin and the transverse spin of the target.Comment: 1 figure and references added, typos corrected. version to appear in Phys.Rev.

    Detection of edges using local geometry

    Get PDF
    Researchers described a new representation, the local geometry, for early visual processing which is motivated by results from biological vision. This representation is richer than is often used in image processing. It extracts more of the local structure available at each pixel in the image by using receptive fields that can be continuously rotated and that go to third order spatial variation. Early visual processing algorithms such as edge detectors and ridge detectors can be written in terms of various local geometries and are computationally tractable. For example, Canny's edge detector has been implemented in terms of a local geometry of order two, and a ridge detector in terms of a local geometry of order three. The edge detector in local geometry was applied to synthetic and real images and it was shown using simple interpolation schemes that sufficient information is available to locate edges with sub-pixel accuracy (to a resolution increase of at least a factor of five). This is reasonable even for noisy images because the local geometry fits a smooth surface - the Taylor series - to the discrete image data. Only local processing was used in the implementation so it can readily be implemented on parallel mesh machines such as the MPP. Researchers expect that other early visual algorithms, such as region growing, inflection point detection, and segmentation can also be implemented in terms of the local geometry and will provide sufficiently rich and robust representations for subsequent visual processing

    Dynamical Polarizabilities of SU(3) Octet of Baryons

    Full text link
    We present calculations and an analysis of the spin-independent dipole electric and magnetic dynamical polarizabilities for the lowest in mass SU(3) octet of baryons. These extensive calculations are made possible by the recent implementation of semi-automatized calculations in Chiral Perturbation Theory which allows evaluating dynamical spin-independent electromagnetic polarizabilities from Compton scattering up to next-to-the-leading order. Our results are in good agreement with calculations performed for nucleons found in the literature. The dependencies for the range of photon energies up to 1 GeV, covering the majority of the meson photo production channels, are analyzed. The separate contributions into polarizabilities from the various baryon meson clouds are studied.Comment: 10 pages, 7 figures, extended analysis of hyperon polarizabilitie

    The Zero-Bin and Mode Factorization in Quantum Field Theory

    Get PDF
    We study a Lagrangian formalism that avoids double counting in effective field theories where distinct fields are used to describe different infrared momentum regions for the same particle. The formalism leads to extra subtractions in certain diagrams and to a new way of thinking about factorization of modes in quantum field theory. In non-relativistic field theories, the subtractions remove unphysical pinch singularities in box type diagrams, and give a derivation of the known pull-up mechanism between soft and ultrasoft fields which is required by the renormalization group evolution. In a field theory for energetic particles, the soft-collinear effective theory (SCET), the subtractions allow the theory to be defined with different infrared and ultraviolet regulators, remove double counting between soft, ultrasoft, and collinear modes, and give results which reproduce the infrared divergences of the full theory. Our analysis shows that convolution divergences in factorization formul\ae occur due to an overlap of momentum regions. We propose a method that avoids this double counting, which helps to resolve a long standing puzzle with singularities in collinear factorization in QCD. The analysis gives evidence for a factorization in rapidity space in exclusive decays.Comment: 92 pages, v4- Journal version. Some improvements to language in sections I, IIA, VI

    Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC

    Full text link
    Previous work on electroweak radiative corrections to high energy scattering using soft-collinear effective theory (SCET) has been extended to include external transverse and longitudinal gauge bosons and Higgs bosons. This allows one to compute radiative corrections to all parton-level hard scattering amplitudes in the standard model to NLL order, including QCD and electroweak radiative corrections, mass effects, and Higgs exchange corrections, if the high-scale matching, which is suppressed by two orders in the log counting, and contains no large logs, is known. The factorization structure of the effective theory places strong constraints on the form of gauge theory amplitudes at high energy for massless and massive gauge theories, which are discussed in detail in the paper. The radiative corrections can be written as the sum of process-independent one-particle collinear functions, and a universal soft function. We give plots for the radiative corrections to q qbar -> W_T W_T, Z_T Z_T, W_L W_L, and Z_L H, and gg -> W_T W_T to illustrate our results. The purely electroweak corrections are large, ranging from 12% at 500 GeV to 37% at 2 TeV for transverse W pair production, and increasing rapidly with energy. The estimated theoretical uncertainty to the partonic (hard) cross-section in most cases is below one percent, smaller than uncertainties in the parton distribution functions (PDFs). We discuss the relation between SCET and other factorization methods, and derive the Magnea-Sterman equations for the Sudakov form factor using SCET, for massless and massive gauge theories, and for light and heavy external particles.Comment: 44 pages, 30 figures. Refs added, typos fixed. ZL ZL plots removed because of a possible subtlet

    A Lattice Test of 1/N_c Baryon Mass Relations

    Full text link
    1/N_c baryon mass relations are compared with lattice simulations of baryon masses using different values of the light-quark masses, and hence different values of SU(3) flavor-symmetry breaking. The lattice data clearly display both the 1/N_c and SU(3) flavor-symmetry breaking hierarchies. The validity of 1/N_c baryon mass relations derived without assuming approximate SU(3) flavor-symmetry also can be tested by lattice data at very large values of the strange quark mass. The 1/N_c expansion constrains the form of discretization effects; these are suppressed by powers of 1/N_c by taking suitable combinations of masses. This 1/N_c scaling is explicitly demonstrated in the present work.Comment: 13 pages, 20 figures; v2 version to be published in PR

    Radiative quarkonium decays and the NMSSM Higgs interpretation of the HyperCP Sigma+ --> p mu+mu- events

    Full text link
    We study the potential of radiative decays of the Upsilon(1S) and of the phi mesons to search for a light pseudoscalar Higgs boson, proposed as a possible interpretation of Sigma+ --> p mu+mu- events observed by the HyperCP collaboration at Fermilab. We conclude that the detection of this signal should certainly be possible with the current CLEO Upsilon(1S) data, and is within the reach of KLOE in at least part of the range of couplings suggested by the HyperCP findings.Comment: 6 pages, no figure
    corecore