2,730 research outputs found
Young pregnant woman with mild dysphagia: Diagnostic and treatment workup predicting laryngeal schwannoma.
Updated and new perspectives on diagnosis, prognosis, and therapy of malignant pheochromocytoma/paraganglioma.
Malignant pheochromocytomas/paragangliomas are rare tumors with a poor prognosis. Malignancy is diagnosed by the development of metastases as evidenced by recurrences in sites normally devoid of chromaffin tissue. Histopathological, biochemical, molecular and genetic markers offer only information on potential risk of metastatic spread. Large size, extraadrenal location, dopamine secretion, SDHB mutations, a PASS score higher than 6, a high Ki-67 index are indexes for potential malignancy. Metastases can be present at first diagnosis or occur years after primary surgery. Measurement of plasma and/or urinary metanephrine, normetanephrine and metoxytyramine are recommended for biochemical diagnosis. Anatomical and functional imaging using different radionuclides are necessary for localization of tumor and metastases. Metastatic pheochromocytomas/paragangliomas is incurable. When possible, surgical debulking of primary tumor is recommended as well as surgical or radiosurgical removal of metastases. I-131-MIBG radiotherapy is the treatment of choice although results are limited. Chemotherapy is reserved to more advanced disease stages. Recent genetic studies have highlighted the main pathways involved in pheochromocytomas/paragangliomas pathogenesis thus suggesting the use of targeted therapy which, nevertheless, has still to be validated. Large cooperative studies on tissue specimens and clinical trials in large cohorts of patients are necessary to achieve better therapeutic tools and improve patient prognosis
Oxaliplatin-Induced Neuropathy: Genetic and Epigenetic Profile to Better Understand How to Ameliorate This Side Effect
Antioxidant support to ameliorate the oxaliplatin-dependent microglial alteration: morphological and molecular study
Oxaliplatin is a third-generation chemotherapy drug mainly used for colorectal cancer treatment. However, it is also known to trigger neuropathy whose underlying neurobiological mechanisms are still under investigation and currently available treatments show limited efficacy. It is now established that neurons are not the only cell type involved in chronic pain and that glial cells, mainly microglia and astrocytes, are implicated in the initiation and maintenance of neuropathy. Among all the pathogenetic factors involved in neuropathic pain, an oxaliplatin- dependent oxidative stress plays a predominant role. In our study, the antioxidant properties of magnesium (Mg), manganese (Mn) and zinc (Zn) salts were evaluated in order to counteract microglial activation induced by oxaliplatin. The antioxidant efficacy of these metals was evaluated by means of molecular and morphological assays on the BV-2 microglial cell line. Our data clearly show that Mg, Mn and Zn salts are able to prevent oxaliplatin-dependent microglial alterations by reducing both oxidative and endoplasmic reticulum stress
The Adipose Stem Cell as a Novel Metabolic Actor in Adrenocortical Carcinoma Progression: Evidence from an In Vitro Tumor Microenvironment Crosstalk Model
Metabolic interplay between the tumor microenvironment and cancer cells is a potential target for novel anti-cancer approaches. Among stromal components, adipocytes and adipose precursors have been shown to actively participate in tumor progression in several solid malignancies. In adrenocortical carcinoma (ACC), a rare endocrine neoplasia with a poor prognosis, cancer cells often infiltrate the fat mass surrounding the adrenal organ, enabling possible crosstalk with the adipose cells. Here, by using an in vitro co-culture system, we show that the interaction between adipose-derived stem cells (ASCs) and the adrenocortical cancer cell line H295R leads to metabolic and functional reprogramming of both cell types: cancer cells limit differentiation and increase proliferation of ASCs, which in turn support tumor growth and invasion. This effect associates with a shift from the paracrine cancer-promoting IGF2 axis towards an ASC-associated leptin axis, along with a shift in the SDF-1 axis towards CXCR7 expression in H295R cells. In conclusion, our findings suggest that adipose precursors, as pivotal components of the ACC microenvironment, promote cancer cell reprogramming and invasion, opening new perspectives for the development of more effective therapeutic approaches
DIAGNOSIS of ENDOCRINE DISEASE: SDHx mutations: Beyond pheochromocytomas and paragangliomas
Mutations in one of the five genes encoding the succinate dehydrogenase (SDHx) or mitochondrial complex II cause the corresponding family syndromes characterized by the occurrence of pheochromocytomas (PHEO) and paragangliomas (PGL). Recently, other solid growths, such as gastrointestinal stromal tumors (GISTs), renal cell carcinomas (RCCs) and pituitary adenomas (PAs) have been associated with these syndromes. In the absence of prospective studies assessing their frequency, at present, their occurrence seems too infrequent to suggest systematic screening for SDHx mutation carriers. However, SDHB immunohistochemistry (IHC) on tumor tissues or SDHx genetic testing on blood or tumor samples should be performed in patients affected by GISTs, RCCs or PAs with clinicopathologic phenotypes suggesting an etiologic role of SDHx genes.</jats:p
- …