26,177 research outputs found

    Compact artificial hand

    Get PDF
    A relatively simple, compact artificial hand, is described which includes hooks pivotally mounted on first frame to move together and apart. The first frame is rotatably mounted on a second frame to enable "turning at the wrist" movement without limitation. The second frame is pivotally mounted on a third frame to permit 'flexing at the wrist' movement. A hook-driving motor is fixed to the second frame but has a shaft that drives a speed reducer on the first frame which, in turn, drives the hooks. A second motor mounted on the second frame, turns a gear on the first frame to rotate the first frame and the hooks thereon. A third motor mounted on the third frame, turns a gear on a second frame to pivot it

    They are Small Worlds After All: Revised Properties of Kepler M Dwarf Stars and their Planets

    Get PDF
    We classified the reddest (rJ>2.2r-J>2.2) stars observed by the NASA KeplerKepler mission into main sequence dwarf or evolved giant stars and determined the properties of 4216 M dwarfs based on a comparison of available photometry with that of nearby calibrator stars, as well as available proper motions and spectra. We revised the properties of candidate transiting planets using the stellar parameters, high-resolution imaging to identify companion stars, and, in the case of binaries, fitting light curves to identify the likely planet host. In 49 of 54 systems we validated the primary as the host star. We inferred the intrinsic distribution of M dwarf planets using the method of iterative Monte Carlo simulation. We compared several models of planet orbital geometry and clustering and found that one where planets are exponentially distributed and almost precisely coplanar best describes the distribution of multi-planet systems. We determined that KeplerKepler M dwarfs host an average of 2.2±0.32.2 \pm 0.3 planets with radii of 1-4RR_{\oplus} and orbital periods of 1.5-180 d. The radius distribution peaks at 1.2R\sim 1.2R_{\oplus} and is essentially zero at 4R4R_{\oplus}, although we identify three giant planet candidates other than the previously confirmed Kepler-45b. There is suggestive but not significant evidence that the radius distribution varies with orbital period. The distribution with logarithmic orbital period is flat except for a decline for orbits less than a few days. Twelve candidate planets, including two Jupiter-size objects, experience an irradiance below the threshold level for a runaway greenhouse on an Earth-like planet and are thus in a "habitable zone".Comment: MNRAS, in press. Tables 1, 3, and 4 are available in electronic form in the "anc" director

    An Understanding of the Shoulder of Giants: Jovian Planets around Late K Dwarf Stars and the Trend with Stellar Mass

    Get PDF
    Analyses of exoplanet statistics suggest a trend of giant planet occurrence with host star mass, a clue to how planets like Jupiter form. One missing piece of the puzzle is the occurrence around late K dwarf stars (masses of 0.5-0.75Msun and effective temperatures of 3900-4800K). We analyzed four years of Doppler radial velocities data of 110 late K dwarfs, one of which hosts two previously reported giant planets. We estimate that 4.0+/-2.3% of these stars have Saturn-mass or larger planets with orbital periods <245d, depending on the planet mass distribution and RV variability of stars without giant planets. We also estimate that 0.7+/-0.5% of similar stars observed by Kepler have giant planets. This Kepler rate is significantly (99% confidence) lower than that derived from our Doppler survey, but the difference vanishes if only the single Doppler system (HIP 57274) with completely resolved orbits is considered. The difference could also be explained by the exclusion of close binaries (without giant planets) from the Doppler but not Kepler surveys, the effect of long-period companions and stellar noise on the Doppler data, or an intrinsic difference between the two populations. Our estimates for late K dwarfs bridge those for solar-type stars and M dwarfs and support a positive trend with stellar mass. Small sample size precludes statements about finer structure, e.g. a "shoulder" in the distribution of giant planets with stellar mass. Future surveys such as the Next Generation Transit Survey and the Transiting Exoplanet Satellite Survey will ameliorate this deficiency.Comment: Accepted to The Astrophysical Journa

    Probing minimal supergravity in the type-I seesaw mechanism with lepton flavour violation at the CERN LHC

    Get PDF
    The most general supersymmetric seesaw mechanism has too many parameters to be predictive and thus can not be excluded by any measurements of lepton flavour violating (LFV) processes. We focus on the simplest version of the type-I seesaw mechanism assuming minimal supergravity boundary conditions. We compute branching ratios for the LFV scalar tau decays, τ~2(e,μ)+χ10{\tilde \tau}_2 \to (e,\mu) + \chi^0_1, as well as loop-induced LFV decays at low energy, such as lilj+γl_i \to l_j + \gamma and li3ljl_i \to 3 l_j, exploring their sensitivity to the unknown seesaw parameters. We find some simple, extreme scenarios for the unknown right-handed parameters, where ratios of LFV branching ratios correlate with neutrino oscillation parameters. If the overall mass scale of the left neutrinos and the value of the reactor angle were known, the study of LFV allows, in principle, to extract information about the so far unknown right-handed neutrino parameters.Comment: 29 pages, 27 figures; added explanatory comments, corrected typos, final version for publicatio

    Quasiclassical Equations of Motion for Nonlinear Brownian Systems

    Get PDF
    Following the formalism of Gell-Mann and Hartle, phenomenological equations of motion are derived from the decoherence functional formalism of quantum mechanics, using a path-integral description. This is done explicitly for the case of a system interacting with a ``bath'' of harmonic oscillators whose individual motions are neglected. The results are compared to the equations derived from the purely classical theory. The case of linear interactions is treated exactly, and nonlinear interactions are compared using classical and quantum perturbation theory.Comment: 24 pages, CALT-68-1848 (RevTeX 2.0 macros

    On the treatment of threshold effects in SUSY spectrum computations

    Get PDF
    We take a critical view of the treatment of threshold effects in SUSY spectrum computations from high-scale input. We discuss the two principal methods of (a) renormalization at a common SUSY scale versus (b) integrating out sparticles at their own mass scales. We point out problems in the implementations in public spectrum codes, together with suggestions for improvements. In concrete examples, we compare results of Isajet7.72 and Spheno2.2.3, and present the improvements done in Isajet7.73. We also comment on theoretical uncertainties. Last but not least, we outline how a consistent multiscale approach may be achieved.Comment: 15 pages, 1 figur

    Field Equations and Conservation Laws in the Nonsymmetric Gravitational Theory

    Get PDF
    The field equations in the nonsymmetric gravitational theory are derived from a Lagrangian density using a first-order formalism. Using the general covariance of the Lagrangian density, conservation laws and tensor identities are derived. Among these are the generalized Bianchi identities and the law of energy-momentum conservation. The Lagrangian density is expanded to second-order, and treated as an ``Einstein plus fields'' theory. From this, it is deduced that the energy is positive in the radiation zone.Comment: 16 pages, RevTeX. Additional equations supplie

    Heisenberg exchange in magnetic monoxides

    Full text link
    The superexchange intertacion in transition-metal oxides, proposed initially by Anderson in 1950, is treated using contemporary tight-binding theory and existing parameters. We find also a direct exchange for nearest-neighbor metal ions, larger by a factor of order five than the superexchange. This direct exchange arises from Vddm coupling, rather than overlap of atomic charge densities, a small overlap exchange contribution which we also estimate. For FeO and CoO there is also an important negative contribution, related to Stoner ferromagnetism, from the partially filled minority-spin band which broadens when ionic spins are aligned. The corresponding J1 and J2 parameters are calculated for MnO, FeO, CoO, and NiO. They give good accounts of the Neel and the Curie-Weiss temperatures, show appropriate trends, and give a reasonable account of their volume dependences. For MnO the predicted value for the magnetic susceptibility at the Neel temperature and the crystal distortion arising from the antiferromagnetic transition were reasonably well given. Application to CuO2 planes in the cuprates gives J=1220oK, compared to an experimental 1500oK, and for LiCrO2 gives J1=4 50oK compared to an experimental 230oK.Comment: 21 pages, 1 figure, submitted to Phys. Rev. B 1/19/07. Realized J=4V^2/U applies generally, as opposed to J=2V^2/U from one-electron theory (1/28 revision
    corecore