137 research outputs found
Molecular analysis of myelodysplastic syndrome with isolated deletion of the long arm of chromosome 5 reveals a specific spectrum of molecular mutations with prognostic impact: a study on 123 patients and 27 genes
The only cytogenetic aberration defining a myelodysplastic syndrome subtype is the deletion of the long arm of chromosome 5, which, along with morphological features, leads to the diagnosis of myelodysplastic syndrome with isolated deletion of the long arm of chromosome 5. These patients show a good prognosis and respond to treatment such as lenalidomide, but some cases progress to acute myeloid leukemia; however, the molecular mutation pattern is rarely characterized. Therefore, we investigated a large cohort of 123 myelodysplastic syndrome patients with isolated deletion of the long arm of chromosome 5, diagnosed following the World Health Organization classifications 2008 and 2016, by sequencing 27 genes. A great proportion of patients showed no or only one mutation. Only seven genes showed mutation frequencies >5% (SF3B1, DNMT3A, TP53, TET2, CSNK1A1, ASXL1, JAK2). However, the pattern of recurrently mutated genes was comparable to other myelodysplastic syndrome subtypes by comparison to a reference cohort, except that of TP53 which was significantly more often mutated in myelodysplastic syndrome with isolated deletion of the long arm of chromosome 5. As expected, SF3B1 was frequently mutated and correlated with ring sider-oblasts, while JAK2 mutations correlated with elevated platelet counts. Surprisingly, SF3B1 mutations led to significantly worse prognosis within cases with isolated deletion of the long arm of chromosome 5, but showed a comparable outcome to other myelodysplastic syndrome subtypes with SF3B1 mutation. However, addressing genetic stability in follow-up cases might suggest different genetic mechanisms for progression to secondary acute myeloid leukemia compared to overall myelodysplastic syndrome patients
Adverse prognostic impact of complex karyotype (≥3 cytogenetic alterations) in adult T-cell acute lymphoblastic leukemia (T-ALL)
Cytogenetics; Prognosis; TherapyCitogenética; Pronóstico; TerapiaCitogenètica; Pronòstic; Terà piaThe potential prognostic value of conventional karyotyping in adult T-cell acute lymphoblastic leukemia (T-ALL) remains an open question. We hypothesized that a modified cytogenetic classification, based on the number and type of cytogenetic abnormalities, would allow the identification of high-risk adult T-ALL patients. Complex karyotype defined by the presence of ≥3 cytogenetic alterations identified T-ALL patients with poor prognosis in this study. Karyotypes with ≥3 abnormalities accounted for 16 % (22/139) of all evaluable karyotypes, corresponding to the largest poor prognosis cytogenetic subgroup of T-ALL identified so far. Patients carrying karyotypes with ≥3 cytogenetic alterations showed a significantly inferior response to therapy, and a poor outcome in terms of event-free survival (EFS), overall survival (OS) and cumulative incidence of relapse (CIR), independently of other baseline characteristics and the end-induction minimal residual disease (MRD) level. Additional molecular analyses of patients carrying ≥3 cytogenetic alterations showed a unique molecular profile that could contribute to understand the underlying molecular mechanisms of resistance and to evaluate novel targeted therapies (e.g. IL7R directed) with potential impact on outcome of adult T-ALL patients.This project was supported by the AECC (GC16173697BIGA); ISCIII (PI19/01828) co-funded by ERDF/ESF "A way to make Europe"/"Investing in your future", CERCA/Generalitat de Catalunya SGR 2017 288 (GRC)/ “La Caixa” P. Barba was supported by the Instituto de Salud Carlos III FIS16/01433 and PERIS 2018-2020 from Generalitat de Catalunya (BDNS357800)
Different prognostic impact of recurrent gene mutations in chronic lymphocytic leukemia depending on IGHV gene somatic hypermutation status: a study by ERIC in HARMONY
Cancer genetics; Genetics researchGenètica del cà ncer; Recerca genèticaGenética del cáncer; Investigación genéticaRecent evidence suggests that the prognostic impact of gene mutations in patients with chronic lymphocytic leukemia (CLL) may differ depending on the immunoglobulin heavy variable (IGHV) gene somatic hypermutation (SHM) status. In this study, we assessed the impact of nine recurrently mutated genes (BIRC3, EGR2, MYD88, NFKBIE, NOTCH1, POT1, SF3B1, TP53, and XPO1) in pre-treatment samples from 4580 patients with CLL, using time-to-first-treatment (TTFT) as the primary end-point in relation to IGHV gene SHM status. Mutations were detected in 1588 (34.7%) patients at frequencies ranging from 2.3–9.8% with mutations in NOTCH1 being the most frequent. In both univariate and multivariate analyses, mutations in all genes except MYD88 were associated with a significantly shorter TTFT. In multivariate analysis of Binet stage A patients, performed separately for IGHV-mutated (M-CLL) and unmutated CLL (U-CLL), a different spectrum of gene alterations independently predicted short TTFT within the two subgroups. While SF3B1 and XPO1 mutations were independent prognostic variables in both U-CLL and M-CLL, TP53, BIRC3 and EGR2 aberrations were significant predictors only in U-CLL, and NOTCH1 and NFKBIE only in M-CLL. Our findings underscore the need for a compartmentalized approach to identify high-risk patients, particularly among M-CLL patients, with potential implications for stratified management.The European Research Initiative on CLL (ERIC) is a partner in the HARMONY Alliance, the EHA Scientific Working group on CLL and the ELN Workpackage 7 on CLL. This work was in part supported by; Associazione Italiana per la Ricerca sul Cancro—AIRC, Milano, Italy (Investigator Grant #20246 and Special Program on Metastatic Disease—5 per mille #21198); ERA NET TRANSCAN-2 Joint Transnational Call for Proposals: JTC 2014 (project #143 GCH-CLL) and JTC 2016 (project #179 NOVEL), project code (MIS) 5041673; Bando della Ricerca Finalizzata 2018, Ministero della Salute, Roma, Italy (progetto RF-2018–12368231); “la Caixa” Foundation (Health Research 2017 Program HR17-00221); the American Association for Cancer Research (2021 AACR-Amgen Fellowship in Clinical/Translational Cancer Research, 21-40-11-NADE), the European Hematology Association (EHA Junior Research Grant 2021, RG-202012-00245), and the Lady Tata Memorial Trust (International Award for Research in Leukaemia 2021-2022, LADY_TATA_21_3223); the Hellenic Precision Medicine Network in Oncology; project ODYSSEAS (Intelligent and Automated Systems for enabling the Design, Simulation and Development of Integrated Processes and Products) implemented under the “Action for the Strategic Development on the Research and Technological Sector”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union, with grant agreement no: MIS 5002462”; MH CZ—DRO (FNBr, 65269705), NV19-03-00091 and the project National Institute for Cancer Research (Programme EXCELES, ID Project No. LX22NPO5102)—Funded by the European Union—Next-Generation EU; Instituto de Salud Carlos III (ISCIII), “PI21/00983”, co-funded by the European Union; the EU’s Horizon 2020 research and innovation program under grant agreement No. 739593, by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the K21_137948, FK20_134253, TKP2021-EGA-24 and TKP2021-NVA-15 funding schemes, and Elixir Hungary; Instituto de Salud Carlos III (ISCIII), “PI21/00983”, co-funded by the European Union; Fondo di Ateneo per la Ricerca (FAR) 2019, 2020 and 2021 of the University of Ferrara (GMR; AC), Associazione Italiana contro le Leucemie-Linfomi e Mieloma ONLUS Ferrara (AC; GMR), BEAT Leukemia Foundation Milan Italy (AC); the Danish Cancer Society and the CLL-CLUE project under the frame of ERA PerMed; Cancer Research UK (ECRIN-M3 accelerator award C42023/A29370, Southampton Experimental Cancer Medicine Centre grant C24563/A15581, Cancer Research UK Southampton Centre grant C34999/A18087, and programme C2750/A23669); the Swedish Cancer Society (19 0425 Pj 01 H), the Swedish Research Council (2020-01750), the Knut and Alice Wallenberg Foundation (2016.0373), Region Stockholm (ALF/FoUI-962423), and Radiumhemmets Forskningsfonder (194133), Stockholm; and Lion’s Cancer Research Foundation, Uppsala
Classical meets malignant hematology: a case of acquired εγδβ-thalassemia in clonal hematopoiesis
Hemoglobinopathies including thalassemias are among the most frequent genetic disorders worldwide. Primarily, these entities result from germline variants in the globin gene clusters and their cis-acting regulatory elements, and thus the WHO classifies thalassemias as inherited diseases. Non-inherited disorders of globin chain synthesis mimicking the phenotype of thalassemias have also been described and are referred to as acquired thalassemias. These forms mainly affect the alpha-globin genes and are observed at much lower frequencies..
A case of familial donor-derived acute myeloid leukemia with underlying pre-leukemic mutations
Not available
- …