2,977 research outputs found
Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives
Part 2 of this monograph builds on the introduction to tensor networks and
their operations presented in Part 1. It focuses on tensor network models for
super-compressed higher-order representation of data/parameters and related
cost functions, while providing an outline of their applications in machine
learning and data analytics. A particular emphasis is on the tensor train (TT)
and Hierarchical Tucker (HT) decompositions, and their physically meaningful
interpretations which reflect the scalability of the tensor network approach.
Through a graphical approach, we also elucidate how, by virtue of the
underlying low-rank tensor approximations and sophisticated contractions of
core tensors, tensor networks have the ability to perform distributed
computations on otherwise prohibitively large volumes of data/parameters,
thereby alleviating or even eliminating the curse of dimensionality. The
usefulness of this concept is illustrated over a number of applied areas,
including generalized regression and classification (support tensor machines,
canonical correlation analysis, higher order partial least squares),
generalized eigenvalue decomposition, Riemannian optimization, and in the
optimization of deep neural networks. Part 1 and Part 2 of this work can be
used either as stand-alone separate texts, or indeed as a conjoint
comprehensive review of the exciting field of low-rank tensor networks and
tensor decompositions.Comment: 232 page
Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives
Part 2 of this monograph builds on the introduction to tensor networks and
their operations presented in Part 1. It focuses on tensor network models for
super-compressed higher-order representation of data/parameters and related
cost functions, while providing an outline of their applications in machine
learning and data analytics. A particular emphasis is on the tensor train (TT)
and Hierarchical Tucker (HT) decompositions, and their physically meaningful
interpretations which reflect the scalability of the tensor network approach.
Through a graphical approach, we also elucidate how, by virtue of the
underlying low-rank tensor approximations and sophisticated contractions of
core tensors, tensor networks have the ability to perform distributed
computations on otherwise prohibitively large volumes of data/parameters,
thereby alleviating or even eliminating the curse of dimensionality. The
usefulness of this concept is illustrated over a number of applied areas,
including generalized regression and classification (support tensor machines,
canonical correlation analysis, higher order partial least squares),
generalized eigenvalue decomposition, Riemannian optimization, and in the
optimization of deep neural networks. Part 1 and Part 2 of this work can be
used either as stand-alone separate texts, or indeed as a conjoint
comprehensive review of the exciting field of low-rank tensor networks and
tensor decompositions.Comment: 232 page
Age dependence of serum beta-N-acetylhexosaminidase (NAG) activity
Serum Nacetyl-beta-Dglucosaminidase (NAG; EC 3.2.1.30) is a hexosaminidase and may be a predictor of vascular injury, e.g., in infant respiratory distress syndrome, pneumonia, bronchopulmonary dysplasia and necrotizing enterocolitis. To estimate the new diagnostic prospects we have modified our urinary NAG assay. In this sensitive colorimetric microassay, VRAGlcNAc was used as a substrate. In the present study the age dependence of serum NAG activity was investigated in newborn babies, infants (124 months), children (218 years) and adults (1980 years). Serum NAG activity was found to be agedependent; it is higher in early childhood (1159 U/l) but decreases to a constant value at the age of 12 years. After the age of 2 years it is similar to adults NAG (1030 U/l). In pediatrics agematched reference ranges must be taken into consideration
Radiation Hardness of Thin Low Gain Avalanche Detectors
Low Gain Avalanche Detectors (LGAD) are based on a n++-p+-p-p++ structure
where an appropriate doping of the multiplication layer (p+) leads to high
enough electric fields for impact ionization. Gain factors of few tens in
charge significantly improve the resolution of timing measurements,
particularly for thin detectors, where the timing performance was shown to be
limited by Landau fluctuations. The main obstacle for their operation is the
decrease of gain with irradiation, attributed to effective acceptor removal in
the gain layer. Sets of thin sensors were produced by two different producers
on different substrates, with different gain layer doping profiles and
thicknesses (45, 50 and 80 um). Their performance in terms of gain/collected
charge and leakage current was compared before and after irradiation with
neutrons and pions up to the equivalent fluences of 5e15 cm-2. Transient
Current Technique and charge collection measurements with LHC speed electronics
were employed to characterize the detectors. The thin LGAD sensors were shown
to perform much better than sensors of standard thickness (~300 um) and offer
larger charge collection with respect to detectors without gain layer for
fluences <2e15 cm-2. Larger initial gain prolongs the beneficial performance of
LGADs. Pions were found to be more damaging than neutrons at the same
equivalent fluence, while no significant difference was found between different
producers. At very high fluences and bias voltages the gain appears due to deep
acceptors in the bulk, hence also in thin standard detectors
A connection between stress and development in the multicelular prokaryote Streptomyces coelicolor
Morphological changes leading to aerial mycelium formation and sporulation in the mycelial bacterium Streptomyces coelicolor rely on establishing distinct patterns of gene expression in separate regions of the colony. sH was identified previously as one of three paralogous sigma factors associated with stress responses in S. coelicolor. Here, we show that sigH and the upstream gene prsH (encoding a putative antisigma factor of sH) form an operon transcribed from two developmentally regulated promoters, sigHp1 and sigHp2. While sigHp1 activity is confined to the early phase of growth, transcription of sigHp2 is dramatically induced at the time of aerial hyphae formation. Localization of sigHp2 activity using a transcriptional fusion to the green fluorescent protein reporter gene (sigHp2–egfp) showed that sigHp2 transcription is spatially restricted to sporulating aerial hyphae in wild-type S. coelicolor. However, analysis of mutants unable to form aerial hyphae (bld mutants) showed that sigHp2 transcription and sH protein levels are dramatically upregulated in a bldD mutant, and that the sigHp2–egfp fusion was expressed ectopically in the substrate mycelium in the bldD background. Finally, a protein possessing sigHp2 promoter-binding activity was purified to homogeneity from crude mycelial extracts of S. coelicolor and shown to be BldD. The BldD binding site in the sigHp2 promoter was defined by DNase I footprinting. These data show that expression of sH is subject to temporal and spatial regulation during colony development, that this tissue-specific regulation is mediated directly by the developmental transcription factor BldD and suggest that stress and developmental programmes may be intimately connected in Streptomyces morphogenesis
Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota
An array of seismometers is being developed at the Sanford Underground
Laboratory, the former Homestake mine, in South Dakota to study the properties
of underground seismic fields and Newtonian noise, and to investigate the
possible advantages of constructing a third-generation gravitational-wave
detector underground. Seismic data were analyzed to characterize seismic noise
and disturbances. External databases were used to identify sources of seismic
waves: ocean-wave data to identify sources of oceanic microseisms, and surface
wind-speed data to investigate correlations with seismic motion as a function
of depth. In addition, sources of events contributing to the spectrum at higher
frequencies are characterized by studying the variation of event rates over the
course of a day. Long-term observations of spectral variations provide further
insight into the nature of seismic sources. Seismic spectra at three different
depths are compared, establishing the 4100-ft level as a world-class low
seismic-noise environment.Comment: 29 pages, 16 figure
Dark Matter Capture in the First Stars: a Power Source and Limit on Stellar Mass
The annihilation of weakly interacting massive particles can provide an
important heat source for the first (Pop. III) stars, potentially leading to a
new phase of stellar evolution known as a "Dark Star". When dark matter (DM)
capture via scattering off of baryons is included, the luminosity from DM
annihilation may dominate over the luminosity due to fusion, depending on the
DM density and scattering cross-section. The influx of DM due to capture may
thus prolong the lifetime of the Dark Stars. Comparison of DM luminosity with
the Eddington luminosity for the star may constrain the stellar mass of zero
metallicity stars; in this case DM will uniquely determine the mass of the
first stars. Alternatively, if sufficiently massive Pop. III stars are found,
they might be used to bound dark matter properties.Comment: 19 pages, 4 figures, 3 Tables updated captions and graphs, corrected
grammer, and added citations revised for submission to JCA
Antioxidant and cytotoxic potential of selected plant species of the boraginaceae family
Antioxidant activity is one of the most important properties of plant extracts. Antioxidants from natural sources have been intensively studied in the last few decades. The antioxidant contents of medicinal plants may contribute to the protection of diseases. Bioactive components of plants have a potential role in chemoprevention and inhibition of different phases of the malignant transformation process. Therefore, plant extracts and essential oils are in the focus of research, and in recent decades have been tested on a large number of malignant cell lines. The aim of this study was to examine antioxidant and cytotoxic potential of selected plant species from the Boraginaceae family. Determination of antioxidant activity was performed by ammonium-thiocyanate method. Testing citotoxic activity was performed by MTT test on cancer cell lines: HEP 2c (human larynx carcinoma), RD (human cell line-rhabdomyosarcoma) and L2OB (mouse tumor fibroblast line). The best antioxidant activity showed ethanol, acetone and chloroform extracts of Anchusa officinalis, Echium vulgare and Echium italicum. The tested extracts showed an inhibitory effect on cancer cells, but chloroform and acetone extracts of all three plant had the most effective effect on L2OB cells. Isolation of individual active components from this plants and their testing for cancer cells would be of great importance for this field of research
- …