53 research outputs found

    The smallest macroscale tensile test - a model to describe constrained flow at the microscale

    Get PDF
    This work addresses the strain response and plastic flow behavior of grain boundary or interface containing materials during small scale mechanical testing. We introduce a set of geometric criteria allowing us to constrain a sample to obtain macroscopic-like flow behavior on a microscale test, as shown in Figure 1. Furthermore, the featured parameter, the blocked volume ratio, provided a new description of plasticity of microscale tensile samples in a constrained volume due to external interfaces such as coating and grain boundaries. The proposed description was experimentally validated with different Ni-based materials and different constraints (grain boundary and coating interfaces). The developed theory would open new research avenues in establishing the connection between microscale response to bulk properties as follows: Please click Additional Files below to see the full abstract

    Stable, Ductile and Strong Ultrafine HT-9 Steels via Large Strain Machining

    Get PDF
    Beyond the current commercial materials, refining the grain size is among the proposed strategies to manufacture resilient materials for industrial applications demanding high resistance to severe environments. Here, large strain machining (LSM) was used to manufacture nanostructured HT-9 steel with enhanced thermal stability, mechanical properties, and ductility. Nanocrystalline HT-9 steels with different aspect rations are achieved. In-situ transmission electron microscopy annealing experiments demonstrated that the nanocrystalline grains have excellent thermal stability up to 700 & DEG;C with no additional elemental segregation on the grain boundaries other than the initial carbides, attributing the thermal stability of the LSM materials to the low dislocation densities and strains in the final microstructure. Nano-indentation and micro-tensile testing performed on the LSM material pre- and post-annealing demonstrated the possibility of tuning the material's strength and ductility. The results expound on the possibility of manufacturing controlled nanocrystalline materials via a scalable and cost-effective method, albeit with additional fundamental understanding of the resultant morphology dependence on the LSM conditions

    Report on the Gaithersburg NanoNuclear Workshop and Strategic Planning Recommendations

    Get PDF
    Not applicable. This report not written by INL personnel--Is only being screened through STIMS by Jon Carmack of INL, Battelle. No Abstract or brief Summary/Introduction was included
    • …
    corecore