528 research outputs found

    One-loop Partition Functions of 3D Gravity

    Get PDF
    We consider the one-loop partition function of free quantum field theory in locally Anti-de Sitter space-times. In three dimensions, the one loop determinants for scalar, gauge and graviton excitations are computed explicitly using heat kernel techniques. We obtain precisely the result anticipated by Brown and Henneaux: the partition function includes a sum over "boundary excitations" of AdS3, which are the Virasoro descendants of empty Anti-de Sitter space. This result also allows us to compute the one-loop corrections to the Euclidean action of the BTZ black hole as well its higher genus generalizations.Comment: 28 page

    A new handle on three-point coefficients: OPE asymptotics from genus two modular invariance

    Full text link
    We derive an asymptotic formula for operator product expansion coefficients of heavy operators in two dimensional conformal field theory. This follows from modular invariance of the genus two partition function, and generalises the asymptotic formula for the density of states from torus modular invariance. The resulting formula is universal, depending only on the central charge, but involves the asymptotic behaviour of genus two conformal blocks. We use monodromy techniques to compute the asymptotics of the relevant blocks at large central charge to determine the behaviour explicitly.Comment: 32 pages, 2 figures, 1 appendix, 2 moose, a bear and an o

    Black Hole Attractors and Pure Spinors

    Get PDF
    We construct black hole attractor solutions for a wide class of N=2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to sum_k f_k = Im(C Phi), where Phi is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, Phi=Omega and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation.Comment: 26 page
    • …
    corecore