22 research outputs found

    Developmental mechanisms of stripe patterns in rodents

    Get PDF
    Mammalian color patterns are among the most recognizable characters found in nature and can have a profound impact on fitness. However, little is known about the mechanisms underlying their formation and subsequent evolution. Here we show that, in the African striped mouse (Rhabdomys pumilio), periodic dorsal stripes result from underlying differences in melanocyte maturation, which give rise to spatial variation in 6hair color,and we identify the transcription factor Alx3 as a regulator of this process.In 7embryonic dorsal skin, patterned expression of Alx3 foreshadows pigment stripes and acts 8to directly repress Mitf, a master regulator of melanocyte differentiation, giving rise to 9light-colored hair. Moreover, Alx3 is also upregulated in the light stripes of chipmunks, 10which have independently evolved a similar dorsal pattern.Our results reveal a 11previously unappreciated mechanism for modulating spatial variation in hair color and provide new insight into the ways in which phenotypic novelty evolves.Organismic and Evolutionary Biolog

    Code to analyze all data

    No full text
    Code used for analyzing RNA sequencing data from comparisons between the patagium and shoulder/dorsa

    Coloration in Mammals

    No full text

    Data from: The role of isoforms in the evolution of cryptic coloration in Peromyscus mice

    No full text
    A central goal of evolutionary biology is to understand the molecular mechanisms underlying phenotypic adaptation. While the contribution of protein-coding and cis-regulatory mutations to adaptive traits has been well documented, additional sources of variation – such as the production of alternative RNA transcripts from a single gene, or isoforms – have been understudied. Here, we focus on the pigmentation gene Agouti, known to express multiple alternative transcripts, to investigate the role of isoform usage in the evolution of cryptic colour phenotypes in deer mice (genus Peromyscus). We first characterize the Agouti isoforms expressed in the Peromyscus skin and find two novel isoforms not previously identified in Mus. Next, we show that a locally adapted light-coloured population of P. maniculatus living on the Nebraska Sand Hills shows an upregulation of a single Agouti isoform, termed 1C, compared with their ancestral dark-coloured conspecifics. Using in vitro assays, we show that this preference for isoform 1C may be driven by isoform-specific differences in translation. In addition, using an admixed population of wild-caught mice, we find that variation in overall Agouti expression maps to a region near exon 1C, which also has patterns of nucleotide variation consistent with strong positive selection. Finally, we show that the independent evolution of cryptic light pigmentation in a different species, P. polionotus, has been driven by a preference for the same Agouti isoform. Together, these findings present an example of the role of alternative transcript processing in adaptation and demonstrate molecular convergence at the level of isoform regulation
    corecore