376 research outputs found

    Preattentive texture discrimination with early vision mechanisms

    Get PDF
    We present a model of human preattentive texture perception. This model consists of three stages: (1) convolution of the image with a bank of even-symmetric linear filters followed by half-wave rectification to give a set of responses modeling outputs of V1 simple cells, (2) inhibition, localized in space, within and among the neural-response profiles that results in the suppression of weak responses when there are strong responses at the same or nearby locations, and (3) texture-boundary detection by using wide odd-symmetric mechanisms. Our model can predict the salience of texture boundaries in any arbitrary gray-scale image. A computer implementation of this model has been tested on many of the classic stimuli from psychophysical literature. Quantitative predictions of the degree of discriminability of different texture pairs match well with experimental measurements of discriminability in human observers

    A computational model of texture segmentation

    Get PDF
    An algorithm for finding texture boundaries in images is developed on the basis of a computational model of human texture perception. The model consists of three stages: (1) the image is convolved with a bank of even-symmetric linear filters followed by half-wave rectification to give a set of responses; (2) inhibition, localized in space, within and among the neural response profiles results in the suppression of weak responses when there are strong responses at the same or nearby locations; and (3) texture boundaries are detected using peaks in the gradients of the inhibited response profiles. The model is precisely specified, equally applicable to grey-scale and binary textures, and is motivated by detailed comparison with psychophysics and physiology. It makes predictions about the degree of discriminability of different texture pairs which match very well with experimental measurements of discriminability in human observers. From a machine-vision point of view, the scheme is a high-quality texture-edge detector which works equally on images of artificial and natural scenes. The algorithm makes the use of simple local and parallel operations, which makes it potentially real-time
    corecore