1,549 research outputs found

    Tropical forests and global atmospheric change: a synthesis

    Get PDF
    We present a personal perspective on the highlights of the Theme Issue 'Tropical forests and global atmospheric change'. We highlight the key findings on the contemporary rate of climatic change in the tropics, the evidence--gained from field studies--of large-scale and rapid change in the dynamics and biomass of old-growth forests, and evidence of how climate change and fragmentation can interact to increase the vulnerability of plants and animals to fires. A range of opinions exists concerning the possible cause of these observed changes, but examination of the spatial 'fingerprint' of observed change may help to identify the driving mechanism(s). Studies of changes in tropical forest regions since the last glacial maximum show the sensitivity of species composition and ecology to atmospheric changes. Model studies of change in forest vegetation highlight the potential importance of temperature or drought thresholds that could lead to substantial forest decline in the near future. During the coming century, the Earth's remaining tropical forests face the combined pressures of direct human impacts and a climatic and atmospheric situation not experienced for at least 20 million years. Understanding and monitoring of their response to this atmospheric change are essential if we are to maximize their conservation options

    Energy and water dynamics of a central Amazonian rain forest

    Get PDF
    This paper presents measurements of the energy and water budgets of a tropical rain forest near Manaus, Brazil, in central Amazonia, collected between September 1995 and August 1996. Fluxes of sensible and latent heat were measured using a three-dimensional eddy covariance system mounted above the forest canopy. Using a new approach to analysis of eddy covariance data, we found that the measured fluxes increased significantly when turbulent transport on timescales of 1 to 4 hours was taken into account. With this new analysis, the measured turbulent fluxes almost balanced the incoming net radiation, giving increased confidence in the accuracy of the measured fluxes. Of the 5.56 GJ m-2 yr-1 of solar radiation supplied over the year, 11% were reflected, 15% were lost as net thermal emission, 27% were transported through sensible heat convection, 46% used in evapotranspiration, and 0.5% were used; in net carbon fixation. Total annual evapotranspiration was calculated to be 1123 mm; accounting for 54% of total precipitation. Seasohality was an important influence: limited water availability during the dry season caused evapotranspiration to reduce by 50%. Total canopy conductance was linearly correlated to soil moisture content, with typical midday values ranging between 0.8 mol m-2 s-1 in the wet season and 0.3 mol m-2 s-1 in the dry season. Such seasonal behavior is likely to be prevalent in most tropical forest regions, and correct description of dry-season evapotranspiration will require accurate modeling of plant and soil hydraulic properties and knowledge of root distributions. Copyright 2002 by the American Geophysical Union

    Storm-triggered landslides in the Peruvian Andes and implications for topography, carbon cycles, and biodiversity

    Get PDF
    In this study, we assess the geomorphic role of a rare, large-magnitude landslide-triggering event and consider its effect on mountain forest ecosystems and the erosion of organic carbon in an Andean river catchment. Proximal triggers such as large rain storms are known to cause large numbers of landslides, but the relative effects of such low-frequency, high-magnitude events are not well known in the context of more regular, smaller events. We develop a 25-year duration, annual-resolution landslide inventory by mapping landslide occurrence in the Kosñipata Valley, Peru, from 1988 to 2012 using Landsat, QuickBird, and WorldView satellite images. Catchment-wide landslide rates were high, averaging 0.076 % yr−1 by area. As a result, landslides on average completely turn over hillslopes every  ∼  1320 years, although our data suggest that landslide occurrence varies spatially and temporally, such that turnover times are likely to be non-uniform. In total, landslides stripped 26 ± 4 tC km−2 yr−1 of organic carbon from soil (80 %) and vegetation (20 %) during the study period. A single rain storm in March 2010 accounted for 27 % of all landslide area observed during the 25-year study and accounted for 26 % of the landslide-associated organic carbon flux. An approximately linear magnitude–frequency relationship for annual landslide areas suggests that large storms contribute an equivalent landslide failure area to the sum of lower-frequency landslide events occurring over the same period. However, the spatial distribution of landslides associated with the 2010 storm is distinct. On the basis of precipitation statistics and landscape morphology, we hypothesise that focusing of storm-triggered landslide erosion at lower elevations in the Kosñipata catchment may be characteristic of longer-term patterns. These patterns may have implications for the source and composition of sediments and organic material supplied to river systems of the Amazon Basin, and, through focusing of regular ecological disturbance, for the species composition of forested ecosystems in the region

    Allometry and growth of eight tree taxa in United Kingdom woodlands.

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0As part of a project to develop predictive ecosystem models of United Kingdom woodlands we have collated data from two United Kingdom woodlands - Wytham Woods and Alice Holt. Here we present data from 582 individual trees of eight taxa in the form of summary variables relating to the allometric relationships between trunk diameter, height, crown height, crown radius and trunk radial growth rate to the tree's light environment and diameter at breast height. In addition the raw data files containing the variables from which the summary data were obtained. Large sample sizes with longitudinal data spanning 22 years make these datasets useful for future studies concerned with the way trees change in size and shape over their life-span

    Increasing biomass in Amazonian forest plots

    Get PDF
    A previous study by Phillips et al. of changes in the biomass of permanent sample plots in Amazonian forests was used to infer the presence of a regional carbon sink. However, these results generated a vigorous debate about sampling and methodological issues. Therefore we present a new analysis of biomass change in old-growth Amazonian forest plots using updated inventory data. We find that across 59 sites, the above-ground dry biomass in trees that are more than 10 cm in diameter (AGB) has increased since plot establishment by 1.22 ± 0.43 Mg per hectare per year (ha-1 yr-1), where 1 ha = 104 m2), or 0.98 ± 0.38 Mg ha-1 yr-1 if individual plot values are weighted by the number of hectare years of monitoring. This significant increase is neither confounded by spatial or temporal variation in wood specific gravity, nor dependent on the allometric equation used to estimate AGB. The conclusion is also robust to uncertainty about diameter measurements for problematic trees: for 34 plots in western Amazon forests a significant increase in AGB is found even with a conservative assumption of zero growth for all trees where diameter measurements were made using optical methods and/or growth rates needed to be estimated following fieldwork. Overall, our results suggest a slightly greater rate of net stand-level change than was reported by Phillips et al. Considering the spatial and temporal scale of sampling and associated studies showing increases in forest growth and stem turnover, the results presented here suggest that the total biomass of these plots has on average increased and that there has been a regional-scale carbon sink in old-growth Amazonian forests during the previous two decades

    Tropical forests in the deep human past

    Get PDF
    Since Darwin, studies of human evolution have tended to give primacy to open ‘savannah’ environments as the ecological cradle of our lineage, with dense tropical forests cast as hostile, unfavourable frontiers. These perceptions continue to shape both the geographical context of fieldwork as well as dominant narratives concerning hominin evolution. This paradigm persists despite new, ground-breaking research highlighting the role of tropical forests in the human story. For example, novel research in Africa's rainforests has uncovered archaeological sites dating back into the Pleistocene; genetic studies have revealed very deep human roots in Central and West Africa and in the tropics of Asia and the Pacific; an unprecedented number of coexistent hominin species have now been documented, including Homo erectus, the ‘Hobbit’ (Homo floresiensis), Homo luzonensis, Denisovans, and Homo sapiens. Some of the earliest members of our own species to reach South Asia, Southeast Asia, Oceania and the tropical Americas have shown an unexpected rapidity in their adaptation to even some of the more ‘extreme’ tropical settings. This includes the early human manipulation of species and even habitats. This volume builds on these currently disparate threads and, for the first time, draws together a group of interdisciplinary, agenda-setting papers that firmly places a broader spectrum of tropical environments at the heart of the deep human past1. The tropics: a frontier for the deep human past 2. African tropical forests 3. Southeast Asian and pacific forests 4. Neotropical forests 5. Synthesi

    Increased wildfire risk driven by climate and development interactions in the Bolivian Chiquitania, Southern Amazonia.

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Wildfires are becoming increasingly dominant in tropical landscapes due to reinforcing feedbacks between land cover change and more severe dry conditions. This study focused on the Bolivian Chiquitania, a region located at the southern edge of Amazonia. The extensive, unique and well-conserved tropical dry forest in this region is susceptible to wildfires due to a marked seasonality. We used a novel approach to assess fire risk at the regional level driven by different development trajectories interacting with changing climatic conditions. Possible future risk scenarios were simulated using maximum entropy modelling with presence-only data, combining land cover, anthropogenic and climatic variables. We found that important determinants of fire risk in the region are distance to roads, recent deforestation and density of human settlements. Severely dry conditions alone increased the area of high fire risk by 69%, affecting all categories of land use and land cover. Interactions between extreme dry conditions and rapid frontier expansion further increased fire risk, resulting in potential biomass loss of 2.44±0.8 Tg in high risk area, about 1.8 times higher than the estimates for the 2010 drought. These interactions showed particularly high fire risk in land used for 'extensive cattle ranching', 'agro-silvopastoral use' and 'intensive cattle ranching and agriculture'. These findings have serious implications for subsistence activities and the economy in the Chiquitania, which greatly depend on the forestry, agriculture and livestock sectors. Results are particularly concerning if considering the current development policies promoting frontier expansion. Departmental protected areas inhibited wildfires when strategically established in areas of high risk, even under drought conditions. However, further research is needed to assess their effectiveness accounting for more specific contextual factors. This novel and simple modelling approach can inform fire and land management decisions in the Chiquitania and other tropical forest landscapes to better anticipate and manage large wildfires in the future.The author(s) received no specific funding for this research. The study was mostly self-funded by the corresponding author TD as part of her PhD thesis. TD was supported by the Santander Academic Travel Award to visit INPE as part of this study

    Changes in the carbon balance of tropical forest: evidence from long-term plots

    Get PDF
    The role of the world’s forests as a “sink” for atmospheric carbon dioxide is the subject of active debate. Long-term monitoring of plots in mature humid tropical forests concentrated in South America revealed that biomass gain by tree growth exceeded losses from tree death in 38 out of 50 neotropical sites. These forest plots have accumulated 0.71 + 0.34 tons of carbon per hectare per year in recent decades. The data suggest that neotropical forests may be a significant carbon sink, reducing the rate of increase in atmospheric CO2
    corecore