16 research outputs found

    Inflammatory Mechanisms of Idiopathic Epiretinal Membrane Formation

    Get PDF
    The pathogenesis of idiopathic epiretinal membranes (iERMs), a common pathology found in retina clinics, still eludes researchers to date. Ultrastructural studies of iERMs in the past have failed to identify the cells of origin due to the striking morphologic changes of cells involved via transdifferentiation. Thus, immunohistochemical techniques that stain for the cytostructural components of cells have confirmed the importance of glial cells and hyalocytes in iERM formation. The cellular constituents of iERMs are thought to consist of glial cells, fibroblasts, hyalocytes, etc. that, in concert with cytokines and growth factors present in the vitreous, lead to iERM formation. Recently, research has focused on the role of the posterior hyaloid in iERM formation and contraction, particularly the process of anomalous PVD as it relates to iERM formation. Recent advances in proteomics techniques have also elucidated the growth factors and cytokines involved in iERM formation, most notably nerve growth factor, glial cell line-derived growth factor, and transforming growth factor β1

    Drug Delivery Implants in the Treatment of Vitreous Inflammation

    Get PDF
    The eye is a model organ for the local delivery of therapeutics. This proves beneficial when treating vitreous inflammation and other ophthalmic pathologies. The chronicity of certain diseases, however, limits the effectiveness of locally administered drugs. To maintain such treatments often requires frequent office visits and can result in increased risk of infection and toxicity to the patient. This paper focuses on the implantable devices and particulate drug delivery systems that are currently being implemented and investigated to overcome these challenges. Implants currently on the market or undergoing clinical trials include those made of nonbiodegradable polymers, containing ganciclovir, fluocinolone acetonide, triamcinolone acetonide, and ranibizumab, and biodegradable polymers, containing dexamethasone, triamcinolone acetonide, and ranibizumab. Investigational intravitreal implants and particulate drug delivery systems, such as nanoparticles, microparticles, and liposomes, are also explored in this review article

    Drug Delivery Implants in the Treatment of Vitreous Inflammation

    Get PDF
    The eye is a model organ for the local delivery of therapeutics. This proves beneficial when treating vitreous inflammation and other ophthalmic pathologies. The chronicity of certain diseases, however, limits the effectiveness of locally administered drugs. To maintain such treatments often requires frequent office visits and can result in increased risk of infection and toxicity to the patient. This paper focuses on the implantable devices and particulate drug delivery systems that are currently being implemented and investigated to overcome these challenges. Implants currently on the market or undergoing clinical trials include those made of nonbiodegradable polymers, containing ganciclovir, fluocinolone acetonide, triamcinolone acetonide, and ranibizumab, and biodegradable polymers, containing dexamethasone, triamcinolone acetonide, and ranibizumab. Investigational intravitreal implants and particulate drug delivery systems, such as nanoparticles, microparticles, and liposomes, are also explored in this review article

    Systemic Treatments for Noninfectious Vitreous Inflammation

    Get PDF
    Vitreous inflammation, or vitritis, may result from many causes, including both infectious and noninfectious, including rheumatologic and autoimmune processes. Vitritis is commonly vision threatening and has serious sequelae. Treatment is frequently challenging, but, today, there are multiple methods of systemic treatment for vitritis. These categories include corticosteroids, antimetabolites, alkylating agents, T-cell inhibitors/calcineurin inhibitors, and biologic agents. These treatment categories were reviewed last year, but, even over the course of just a year, many therapies have made progress, as we have learned more about their indications and efficacy. We discuss here discoveries made over the past year on both existing and new drugs, as well as reviewing mechanisms of action, clinical dosages, specific conditions that are treated, adverse effects, and usual course of treatment for each class of therapy
    corecore