5,231 research outputs found

    Exact Dissipative Cosmologies with Stiff Fluid

    Get PDF
    The general solution of the gravitational field equations in the flat Friedmann-Robertson-Walker geometry is obtained in the framework of the full Israel-Stewart-Hiscock theory for a bulk viscous stiff cosmological fluid, with bulk viscosity coefficient proportional to the energy density.Comment: 7 pages, 6 figure

    Full causal dissipative cosmologies with stiff matter

    Full text link
    The general solution of the gravitational field equations for a full causal bulk viscous stiff cosmological fluid, with bulk viscosity coefficient proportional to the energy density to the power 1/4, is obtained in the flat Friedmann-Robertson-Walker geometry. The solution describes a non-inflationary Universe, which starts its evolution from a singular state. The time variation of the scale factor, deceleration parameter, viscous pressure, viscous pressure-thermodynamic pressure ratio, comoving entropy and Ricci and Kretschmann invariants is considered in detail.Comment: 6 pages, 6 figures, to appear in Int. J. Mod. Phys.

    Anisotropic Stars in General Relativity

    Get PDF
    We present a class of exact solutions of Einstein's gravitational field equations describing spherically symmetric and static anisotropic stellar type configurations. The solutions are obtained by assuming a particular form of the anisotropy factor. The energy density and both radial and tangential pressures are finite and positive inside the anisotropic star. Numerical results show that the basic physical parameters (mass and radius) of the model can describe realistic astrophysical objects like neutron stars.Comment: 12 pages, 5 figures, revised version to appear in Proc. R. Soc. London A: Mathematical, Physical & Engineering Science

    Brans-Dicke cosmology with a scalar field potential

    Get PDF
    Three solutions of the Brans-Dicke theory with a self-interacting quartic potential and perfect fluid distribution are presented for a spatially flat geometry. The physical behavior is consistent with the recent cosmological scenario favored by type Ia supernova observations, indicating an accelerated expansion of the Universe.Comment: 6 pages, 4 figure

    Relativistic Compact Objects in Isotropic Coordinates

    Full text link
    We present a matrix method for obtaining new classes of exact solutions for Einstein's equations representing static perfect fluid spheres. By means of a matrix transformation, we reduce Einstein's equations to two independent Riccati type differential equations for which three classes of solutions are obtained. One class of the solutions corresponding to the linear barotropic type fluid with an equation of state p=ÎłÏp=\gamma \rho is discussed in detail.Comment: 9 pages, no figures, accepted for publication in Pramana-Journal of Physic

    A Comment on "Brans-Dicke Cosmology with a scalar field potential"

    Full text link
    We show that a recent letter claiming to present exact cosmological solutions in Brans-Dicke theory actually uses a flawed set of equations as the starting point for their analysis. The results presented in the letter are therefore not valid.Comment: 2 pages, no figures. To appear in Europhysics Letter

    Viscous dissipative effects in isotropic brane cosmology

    Get PDF
    We consider the dynamics of a viscous cosmological fluid in the generalized Randall-Sundrum model for an isotropic brane. To describe the dissipative effects we use the Israel-Hiscock-Stewart full causal thermodynamic theory. In the limiting case of a stiff cosmological fluid with pressure equal to the energy density, the general solution of the field equations can be obtained in an exact parametric form for a cosmological fluid with constant bulk viscosity and with a bulk viscosity coefficient proportional to the square root of the energy density, respectively. The obtained solutions describe generally non-inflationary brane worlds, starting from a singular state. During this phase of evolution the comoving entropy of the Universe is an increasing function of time, and thus a large amount of entropy is created in the brane world due to viscous dissipative processes.Comment: 15 pages, 11 figure
    • 

    corecore