34 research outputs found

    Fine-grained EPR-steering inequalities

    Full text link
    We derive a new steering inequality based on a fine-grained uncertainty relation to capture EPR-steering for bipartite systems. Our steering inequality improves over previously known ones since it can experimentally detect all steerable two-qubit Werner state with only two measurement settings on each side. According to our inequality, pure entangle states are maximally steerable. Moreover, by slightly changing the setting, we can express the amount of violation of our inequality as a function of their violation of the CHSH inequality. Finally, we prove that the amount of violation of our steering inequality is, up to a constant factor, a lower bound on the key rate of a one-sided device independent quantum key distribution protocol secure against individual attacks. To show this result, we first derive a monogamy relation for our steering inequality.Comment: 5 pages, Accepted for publication as a Rapid Communication in Physical Review

    Black hole mass measurements using ionized gas discs: systematic dust effects

    Get PDF
    Using detailed Monte Carlo radiative transfer simulations in realistic models for galactic nuclei, we investigate the influence of interstellar dust in ionized gas discs on the rotation curves and the resulting black hole mass measurements. We find that absorption and scattering by interstellar dust leaves the shape of the rotation curves basically unaltered, but slightly decreases the central slope of the rotation curves. As a result, the "observed" black hole masses are systematically underestimated by some 10 to 20% for realistic optical depths. We therefore argue that the systematic effect of dust attenuation should be taken into account when estimating SMBH masses using ionized gas kinematics.Comment: 4 pages, 2 figures, to appear in "Observational Evidence for Black Holes in the Universe", AIP Conference Proceeding

    Spectral Properties of M87 Using Two-Component Flow

    Full text link
    We fit the observational data for M87 using two-component advective disk model. We show that the flat spectrum from the nucleus of M87 is due to synchrotron radiation produced by non-thermal electrons in the CENBOL. The non-thermal distribution is produced due to acceleration of electrons across the shock in a sub-Keplerian flow.Comment: 4 Pages, 1 Figures, Proceeding of the 2nd Kolkata Conference on "Observational Evidence for the Black Holes in the Universe", Published in AIP, 200

    Black Hole Accretion: From Quasars to Nano-Quasars

    Full text link
    In this review we shall comment on a few recent findings which strengthen the view that the black hole accretion has substantial amount of sub-Keplerian component. The manifestation of this component is many fold. We discuss some of them. A general outline of the complex structure that emerges from the multitude of observations is presented. A detailed outline of what might be going on in outburst sources is also discussed. The relationship amount the spectral and timing properties can be best understood by this picture. We claim that the sub-Keplerian advective disk paradigm is a complete package. Since signatures of sub-Keplerian motion is already increasing in the literature, the whole package must be correct.Comment: 7 Pages, 2 Figures, Proceeding of the 2nd Kolkata Conference on "Observational Evidence for the Black Holes in the Universe", Published in AIP, 200

    Typical AGN at intermediate redshifts

    Full text link
    We study the host galaxies and black holes of typical X-ray selected AGN at intermediate redshifts (z~0.5-1.4). The AGN are selected such that their spectral energy distributions are dominated by stellar emission, i.e., they show a prominent 1.6micron bump thus minimizing the AGN emission contamination. This AGN population comprises approximately 50% of the X-ray selected AGN at these redshifts. AGN reside in the most massive galaxies at the redshifts probed here, with characteristic stellar masses that are intermediate between those of local type 2 AGN and high redshift (z~2) AGN. The inferred black hole masses of typical AGN are similar to those of optically identified quasars at similar redshifts. Since the AGN in our sample are much less luminous than quasars, typical AGN have low Eddington ratios. This suggests that, at least at intermediate redshifts, the cosmic AGN 'downsizing' is due to both a decrease in the characteristic stellar mass of the host galaxies, and less efficient accretion. Finally there is no strong evidence in AGN host galaxies for either highly suppressed star formation, expected if AGN played a role in quenching star formation, or elevated star formation when compared to mass selected galaxies of similar stellar masses and redshifts.Comment: Conference proceedings of the meeting "Observational Evidence for Black Holes" held in Calcutta, Feb 2008. Paper will be published by AI

    Black hole masses and accretion states in ULXs

    Get PDF
    We summarize indirect empirical arguments used for estimating black hole (BH) masses in ultraluminous X-ray sources (ULXs). The interpretation of the X-ray data is still too model-dependent to provide tight constraints, but masses <~ 100 Msun seem the most likely. It is getting clearer that ULXs do not show the same evolutionary sequence between canonical spectral states as stellar-mass BHs, nor the same timescale for state transitions. Most ULX spectra are consistent either with a power-law-dominated state (apparently identical to the canonical low/hard state), or with a very high state (or slim-disk state). Despite often showing luminosity variability, there is little evidence of ULXs settling into a canonical high/soft state, dominated by a standard disk (disk-blackbody spectrum). It is possible that the mass accretion rate (but not necessarily the luminosity) is always higher than Eddington; but there may be additional physical differences between stellar-mass BHs and ULXs, which disfavour transitions to the standard-disk, radio-quiet state in the latter class. We speculate that the hard state in ULXs is associated with jet or magnetic processes rather than an ADAF, can persist up to accretion rates ~ Eddington, and can lead directly to the very high state.Comment: 8 pages; to appear in the proceedings of the conference "Observational Evidence of Black Holes", Kolkata, February 200

    The exact dynamical solution for two dust shells collapsing towards a black hole

    Full text link
    The gravitational collapse of a star is an important issue both for general relativity and astrophysics, which is related to the well known "frozen star" paradox. Following the seminal work of Oppenheimer and Schneider (1939), we present the exact solution for two dust shells collapsing towards a pre-existing black hole. We find that the inner region of the shell is influenced by the property of the shell, which is contrary to the result in Newtonian theory and and the clock inside the shell becomes slower as the shell collapses towards the pre-existing black hole. This result in principle may be tested experimentally if a beam of light travels across the shell. We conclude that the concept of the "frozen star" should be abandoned, since matter can indeed cross a black hole's horizon according to the clock of an external observer. Since matter will not accumulate around the event horizon of a black hole, we predict that only gravitational wave radiation can be produced in the final stage of the merging process of two coalescing black holes. Our results also indicate that for the clock of an external observer, matter, after crossing the event horizon, will never arrive at the "singularity" (i.e. the exact center of the black hole.Comment: 4 pages, 3 figures, contributed talk to the Second Kolkata Conference on Observational Evidence for Black Holes in the Universe, Feb. 2008, Editor Sandip Chakrabart
    corecore