10,529 research outputs found
Formula for Fixed Point Resolution Matrix of Permutation Orbifolds
We find a formula for the resolution of fixed points in extensions of
permutation orbifold conformal field theories by its (half-)integer spin simple
currents. We show that the formula gives a unitary and modular invariant S
matrix.Comment: 42 page
UV background fluctuations traced by metal ions at
Here we investigate how LyC-opaque systems present in the intergalactic
medium at can distort the spectral shape of a uniform UV background
(UVB) through radiative transfer (RT) effects. With this aim in mind, we
perform a multi-frequency RT simulation through a cosmic volume of
~cMpc scale polluted by metals, and self-consistently derive the ions
of all the species. The UVB spatial fluctuations are traced by the ratio of
He and H column density,
, and the ratio of C and Si optical depths, . We find that: (i)
spatially fluctuates through over-dense systems () with statistically
significant deviations \% in 18\% of the volume ; (ii) same
fluctuations in are also present in \% of the enriched domain (only
8\% of the total volume) and derive from a combination of RT induced effects
and in-homogeneous metal enrichment, both effective in systems with .Comment: Accepted for pub. in MNRAS after very minor re
Model Order Selection Rules For Covariance Structure Classification
The adaptive classification of the interference covariance matrix structure
for radar signal processing applications is addressed in this paper. This
represents a key issue because many detection architectures are synthesized
assuming a specific covariance structure which may not necessarily coincide
with the actual one due to the joint action of the system and environment
uncertainties. The considered classification problem is cast in terms of a
multiple hypotheses test with some nested alternatives and the theory of Model
Order Selection (MOS) is exploited to devise suitable decision rules. Several
MOS techniques, such as the Akaike, Takeuchi, and Bayesian information criteria
are adopted and the corresponding merits and drawbacks are discussed. At the
analysis stage, illustrating examples for the probability of correct model
selection are presented showing the effectiveness of the proposed rules
On the thermal dynamic behaviour of the helium-cooled DEMO fusion reactor
The EU-DEMO conceptual design is being conducted among research institutions and universities from 26 countries of European Union, Switzerland and Ukraine. Its mission is to realise electricity from nuclear fusion reaction by 2050. As DEMO has been conceived to deliver net electricity to the grid, the choice of the Breeding Blanket (BB) coolant plays a pivotal role in the reactor design having a strong influence on plant operation, safety and maintenance. In particular, due to the pulsed nature of the heat source, the Primary Heat Transfer System (PHTS) becomes a very important actor of the Balance of Plant (BoP) together with the Power Conversion System (PCS). Moreover, aiming to mitigate the potential negative impact of plasma pulsing on BoP equipment, for the DEMO plant is also being investigated a "heat transfer chain" option which envisages an Intermediate Heat Transfer System (IHTS) equipped with an Energy Storage System (ESS) between PHTS and PCS. Within this framework, a preliminary study has been carried out to analyse the thermal dynamic behaviour of the IHTS system for the Helium-Cooled Pebble Bed (HCPB) BB concept during pulse/dwell transition which should be still considered as the normal operating mode of a fusion power plant. Starting from preliminary thermal-hydraulic calculations made in order to size the main BoP components, the global performances of DEMO BoP have been quantitatively assessed focusing the attention on the attitude of the whole IHTS to smooth the sudden power variations which come from the plasma. The paper describes criteria and rationale followed to develop a numerical model which manages to simulate simple transient scenarios of DEMO BoP. Results of numerical simulations are presented and critically discussed in order to point out the main issues that DEMO BoP has to overcome to achieve a viable electricity power output
Parametric thermal analysis for the optimization of Double Walled Tubes layout in the Water Cooled Lithium Lead inboard blanket of DEMO fusion reactor
Within the roadmap that will lead to the nuclear fusion exploitation for electric energy generation, the construction of a DEMOnstration (DEMO) reactor is, probably, the most important milestone to be reached since it will demonstrate the technological feasibility and economic competitiveness of an industrial-scale nuclear fusion reactor. In order to reach this goal, several European universities and research centres have joined their efforts in the EUROfusion action, funded by HORIZON 2020 UE programme. Within the framework of EUROfusion research activities, ENEA and University of Palermo are involved in the design of the Water-Cooled Lithium Lead Breeding Blanket (WCLL BB), that is one of the two BB concepts under consideration to be adopted in the DEMO reactor. It is mainly characterized by a liquid lithium-lead eutectic alloy acting as breeder (lithium) and neutron multiplier (lead), as well as by subcooled pressurized water as coolant. Two separate circuits, both characterized by a pressure of 15.5 MPa and inlet/outlet temperatures of 295 °C/328 °C, are deputed to cool down the First Wall (FW) and the Breeder Zone (BZ). The former consists in a system of radial-toroidal-radial C-shaped squared channels where countercurrent water flow occurs while the latter relies in the use of bundles of poloidal-radial Double Walled Tubes (DWTs) housed within the breeder. A parametric thermal study has been carried out in order to assess the best DWTs' layout assuring that the structural material maximum temperature does not overcome the allowable limit of 550 °C and that the overall coolant thermal rise fulfils the design target value of 33 °C. The study has been performed following a theoretical-numerical approach based on the Finite Element Method (FEM) and adopting the quoted Abaqus FEM code. Main assumptions and models together with results obtained are herewith reported and critically discussed
Additive effect of non-alcoholic fatty liver disease on metabolic syndrome-related endothelial dysfunction in hypertensive patients
Metabolic syndrome (MS) is characterized by an increased risk of incident diabetes and cardiovascular (CV) events, identifying insulin resistance (IR) and endothelial dysfunction as key elements. Moreover, non-alcoholic fatty liver disease (NAFLD) is bidirectionally linked with MS as a consequence of metabolic and inflammatory abnormalities. We addressed the question if the evolution in NAFLD might worsen endothelium-dependent vasodilating response in MS hypertensives. We recruited 272 Caucasian newly-diagnosed never-treated hypertensive outpatients divided into three groups according to the presence/absence of MS alone or in combination with NAFLD. MS and NAFLD were defined according to the National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATPIII) and non-invasive fatty liver index, respectively. We determined IR by using the homeostasis model assessment (HOMA) index. Vascular function, as forearm blood flow (FBF), was determined through strain-gauge plethysmography after intra-arterial infusion of acetylcholine (ACh) and sodium nitroprusside. MS+NAFLD+ group showed worse metabolic, inflammatory and vascular profiles compared with MS-NAFLD- and MS+NAFLD-. HOMA resulted in being the strongest predictor of FBF both in the MS+NAFLD- and in the MS+NAFLD+ groups, accounting for 20.5% and 33.2% of its variation, respectively. In conclusion, we demonstrated that MS+NAFLD+ hypertensives show a worse endothelium-dependent vasodilation compared with MS+NAFLD-, allowing for consideration of NAFLD as an early marker of endothelial dysfunction in hypertensives
- …