687 research outputs found
The Ambiguity of Simplicity
A system's apparent simplicity depends on whether it is represented
classically or quantally. This is not so surprising, as classical and quantum
physics are descriptive frameworks built on different assumptions that capture,
emphasize, and express different properties and mechanisms. What is surprising
is that, as we demonstrate, simplicity is ambiguous: the relative simplicity
between two systems can change sign when moving between classical and quantum
descriptions. Thus, notions of absolute physical simplicity---minimal structure
or memory---at best form a partial, not a total, order. This suggests that
appeals to principles of physical simplicity, via Ockham's Razor or to the
"elegance" of competing theories, may be fundamentally subjective, perhaps even
beyond the purview of physics itself. It also raises challenging questions in
model selection between classical and quantum descriptions. Fortunately,
experiments are now beginning to probe measures of simplicity, creating the
potential to directly test for ambiguity.Comment: 7 pages, 6 figures, http://csc.ucdavis.edu/~cmg/compmech/pubs/aos.ht
Mode-locking in advection-reaction-diffusion systems: an invariant manifold perspective
Fronts propagating in two-dimensional advection-reaction-diffusion (ARD)
systems exhibit rich topological structure. When the underlying fluid flow is
periodic in space and time, the reaction front can lock to the driving
frequency. We explain this mode-locking phenomenon using so-called burning
invariant manifolds (BIMs). In fact, the mode-locked profile is delineated by a
BIM attached to a relative periodic orbit (RPO) of the front element dynamics.
Changes in the type (and loss) of mode-locking can be understood in terms of
local and global bifurcations of the RPOs and their BIMs. We illustrate these
concepts numerically using a chain of alternating vortices in a channel
geometry.Comment: 9 pages, 13 figure
Prediction, Retrodiction, and The Amount of Information Stored in the Present
We introduce an ambidextrous view of stochastic dynamical systems, comparing
their forward-time and reverse-time representations and then integrating them
into a single time-symmetric representation. The perspective is useful
theoretically, computationally, and conceptually. Mathematically, we prove that
the excess entropy--a familiar measure of organization in complex systems--is
the mutual information not only between the past and future, but also between
the predictive and retrodictive causal states. Practically, we exploit the
connection between prediction and retrodiction to directly calculate the excess
entropy. Conceptually, these lead one to discover new system invariants for
stochastic dynamical systems: crypticity (information accessibility) and causal
irreversibility. Ultimately, we introduce a time-symmetric representation that
unifies all these quantities, compressing the two directional representations
into one. The resulting compression offers a new conception of the amount of
information stored in the present.Comment: 17 pages, 7 figures, 1 table;
http://users.cse.ucdavis.edu/~cmg/compmech/pubs/pratisp.ht
Information Accessibility and Cryptic Processes: Linear Combinations of Causal States
We show in detail how to determine the time-reversed representation of a
stationary hidden stochastic process from linear combinations of its
forward-time -machine causal states. This also gives a check for the
-cryptic expansion recently introduced to explore the temporal range over
which internal state information is spread.Comment: 6 pages, 9 figures, 2 tables;
http://users.cse.ucdavis.edu/~cmg/compmech/pubs/iacplcocs.ht
Frozen reaction fronts in steady flows: a burning-invariant-manifold perspective
The dynamics of fronts, such as chemical reaction fronts, propagating in
two-dimensional fluid flows can be remarkably rich and varied. For
time-invariant flows, the front dynamics may simplify, settling in to a steady
state in which the reacted domain is static, and the front appears "frozen".
Our central result is that these frozen fronts in the two-dimensional fluid are
composed of segments of burning invariant manifolds---invariant manifolds of
front-element dynamics in -space, where is the front
orientation. Burning invariant manifolds (BIMs) have been identified previously
as important local barriers to front propagation in fluid flows. The relevance
of BIMs for frozen fronts rests in their ability, under appropriate conditions,
to form global barriers, separating reacted domains from nonreacted domains for
all time. The second main result of this paper is an understanding of
bifurcations that lead from a nonfrozen state to a frozen state, as well as
bifurcations that change the topological structure of the frozen front. Though
the primary results of this study apply to general fluid flows, our analysis
focuses on a chain of vortices in a channel flow with an imposed wind. For this
system, we present both experimental and numerical studies that support the
theoretical analysis developed here.Comment: 21 pages, 30 figure
A Closed-Form Shave from Occam's Quantum Razor: Exact Results for Quantum Compression
The causal structure of a stochastic process can be more efficiently
transmitted via a quantum channel than a classical one, an advantage that
increases with codeword length. While previously difficult to compute, we
express the quantum advantage in closed form using spectral decomposition,
leading to direct computation of the quantum communication cost at all encoding
lengths, including infinite. This makes clear how finite-codeword compression
is controlled by the classical process' cryptic order and allows us to analyze
structure within the length-asymptotic regime of infinite-cryptic order (and
infinite Markov order) processes.Comment: 21 pages, 13 figures;
http://csc.ucdavis.edu/~cmg/compmech/pubs/eqc.ht
Recommended from our members
Measuring ligand efficacy at the mu-opioid receptor using a conformational biosensor.
The intrinsic efficacy of orthosteric ligands acting at G-protein-coupled receptors (GPCRs) reflects their ability to stabilize active receptor states (R*) and is a major determinant of their physiological effects. Here, we present a direct way to quantify the efficacy of ligands by measuring the binding of a R*-specific biosensor to purified receptor employing interferometry. As an example, we use the mu-opioid receptor (µ-OR), a prototypic class A GPCR, and its active state sensor, nanobody-39 (Nb39). We demonstrate that ligands vary in their ability to recruit Nb39 to µ-OR and describe methadone, loperamide, and PZM21 as ligands that support unique R* conformation(s) of µ-OR. We further show that positive allosteric modulators of µ-OR promote formation of R* in addition to enhancing promotion by orthosteric agonists. Finally, we demonstrate that the technique can be utilized with heterotrimeric G protein. The method is cell-free, signal transduction-independent and is generally applicable to GPCRs
- …