5,946 research outputs found
Auto-focus algorithm based on maximum gradient and threshold
So as to conquer the disservices of the conventional auto-focus algorithm which are poor in real time performance, feeble in anti-noise capability and powerless against the impact of contrast and background pixels, here an auto-focus algorithm focused around greatest gradient and threshold is proposed. It presents an edge component and takes another sort of versatile threshold to evacuate the pixels sullied by noise and background in the picture, then uses enhanced Sobel operators to concentrate maximum gray gradient after picture pre processing and figures assessment esteem. The trial results demonstrate that the proposed algorithm has great continuous-execution, solid unimodality, high sensitivity and strong anti-noise capability. What's more, the algorithm is less impacted by contrast and background in the picture. It can additionally control the sensitivity and focusing reach of the focusing function. So the proposed algorithm is most suitable for auto focu
Deformations of special geometry: in search of the topological string
The topological string captures certain superstring amplitudes which are also
encoded in the underlying string effective action. However, unlike the
topological string free energy, the effective action that comprises
higher-order derivative couplings is not defined in terms of duality covariant
variables. This puzzle is resolved in the context of real special geometry by
introducing the so-called Hesse potential, which is defined in terms of duality
covariant variables and is related by a Legendre transformation to the function
that encodes the effective action. It is demonstrated that the Hesse potential
contains a unique subsector that possesses all the characteristic properties of
a topological string free energy. Genus contributions are constructed
explicitly for a general class of effective actions associated with a
special-K\"ahler target space and are shown to satisfy the holomorphic anomaly
equation of perturbative type-II topological string theory. This identification
of a topological string free energy from an effective action is primarily based
on conceptual arguments and does not involve any of its more specific
properties. It is fully consistent with known results. A general theorem is
presented that captures some characteristic features of the equivalence, which
demonstrates at the same time that non-holomorphic deformations of special
geometry can be dealt with consistently.Comment: 44 pages, LaTex; v2, v3: minor text improvement
Spontaneous breaking of time reversal symmetry in strongly interacting two dimensional electron layers in silicon and germanium
We report experimental evidence of a remarkable spontaneous time reversal
symmetry breaking in two dimensional electron systems formed by atomically
confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si)
and germanium (Ge). Weak localization corrections to the conductivity and the
universal conductance fluctuations were both found to decrease rapidly with
decreasing doping in the Si:P and Ge:P layers, suggesting an effect
driven by Coulomb interactions. In-plane magnetotransport measurements indicate
the presence of intrinsic local spin fluctuations at low doping, providing a
microscopic mechanism for spontaneous lifting of the time reversal symmetry.
Our experiments suggest the emergence of a new many-body quantum state when two
dimensional electrons are confined to narrow half-filled impurity bands
Anomalous in-plane magneto-optical anisotropy of self-assembled quantum dots
We report on a complex nontrivial behavior of the optical anisotropy of
quantum dots that is induced by a magnetic field in the plane of the sample. We
find that the optical axis either rotates in the opposite direction to that of
the magnetic field or remains fixed to a given crystalline direction. A
theoretical analysis based on the exciton pseudospin Hamiltonian unambiguously
demonstrates that these effects are induced by isotropic and anisotropic
contributions to the heavy-hole Zeeman term, respectively. The latter is shown
to be compensated by a built-in uniaxial anisotropy in a magnetic field B_c =
0.4 T, resulting in an optical response typical for symmetric quantum dots.Comment: 5 pages, 3 figure
Acceptance Dependence of Fluctuation in Particle Multiplicity
The effect of limiting the acceptance in rapidity on event-by-event
multiplicity fluctuations in nucleus-nucleus collisions has been investigated.
Our analysis shows that the multiplicity fluctuations decrease when the
rapidity acceptance is decreased. We explain this trend by assuming that the
probability distribution of the particles in the smaller acceptance window
follows binomial distribution. Following a simple statistical analysis we
conclude that the event-by-event multiplicity fluctuations for full acceptance
are likely to be larger than those observed in the experiments, since the
experiments usually have detectors with limited acceptance. We discuss the
application of our model to simulated data generated using VENUS, a widely used
event generator in heavy-ion collisions. We also discuss the results from our
calculations in presence of dynamical fluctuations and possible observation of
these in the actual data.Comment: To appear in Int. J. Mod. Phys.
HyBIS: Windows Guest Protection through Advanced Memory Introspection
Effectively protecting the Windows OS is a challenging task, since most
implementation details are not publicly known. Windows has always been the main
target of malwares that have exploited numerous bugs and vulnerabilities.
Recent trusted boot and additional integrity checks have rendered the Windows
OS less vulnerable to kernel-level rootkits. Nevertheless, guest Windows
Virtual Machines are becoming an increasingly interesting attack target. In
this work we introduce and analyze a novel Hypervisor-Based Introspection
System (HyBIS) we developed for protecting Windows OSes from malware and
rootkits. The HyBIS architecture is motivated and detailed, while targeted
experimental results show its effectiveness. Comparison with related work
highlights main HyBIS advantages such as: effective semantic introspection,
support for 64-bit architectures and for latest Windows (8.x and 10), advanced
malware disabling capabilities. We believe the research effort reported here
will pave the way to further advances in the security of Windows OSes
- …