760 research outputs found

    A novel method of pure oxy-fuel circulating fluidized bed combustion with zero recirculation flue gas : experimental validation

    No full text
    Applying oxy-fuel combustion requires more advanced combustion control methods to avoid inadmissible high flam temperature. In fluidized beds and pulverized unites, enhanced heat transfer and recirculation flue gas are used. On other hand, higher oxygen concentration has pluses viz. better heat transfer, higher efficiency, compact setup and lower installation and operating costs. In pulverized power unites, pure oxy-fuel combustion is used with 100% O2 in the oxidant. In contrast, the highest experimental O2 % in oxy-fuel circulating fluidized bed (CFB) combustor is 70%. To the best of authors’ knowledge, there is no single CFB power plant operating under pure oxygen condition. In this work, we are aiming to use pure oxygen for oxy-CFB combustion, with new temperature controlling method for CFBs depending on combustion staging by fuel staging rather than using RFG. Fuel staging allows controlling combustion and varying SR. At the first stage, the used oxidant is 100% O2, and fuel is fed to achieve over SR (λ>1), where the excess oxidant absorbs heat and does not take a part in the reaction. The products of the first stage are reach of O2 and subsequently it is used as an oxidant for the second stage. For validation, a series of experiments are conducted using mini-CFB, and an oxidant of 100% O2 concentration is used with three SR ratios λ=1.25, 2.0, and 3.0. The resulted average temperatures along the riser for biomass are 1031°C, 950°C, and 798°C; and for coal 1129 °C, 1051 °C, and 961 °C respectively. The controlling of AFT with pure oxy-fuel combustion eliminates the recycled flue gas (RFG) in oxy-fuel CFB combustion and flue gas recirculation section; this simplifies the power plants’ design, fabrication and its installing-operating costs. Familiarising this concept can accelerate adapting oxy-fuel combustion in CFB power plant for Carbon Capturing and Sequestration (CCS). This contribution can commence and commercialise the third generation of oxy-fuel CFB combustion with zero recycled flue gas. Finally, the concept of controlling AFT by SR (λ) is validated experimentally

    The effect of a light radion on the triviality bound on higgs mass

    Full text link
    In this paper we study how the triviality bound on higgs mass in the context of the SM is modified by a light stabilized radion of the Goldberger-Wise variety. Our approach is inherently perturbative. Including the radion contribution to \bt(\l) and \bt(g_t) to one loop we evolve the higgs self coupling \l from the cut off \L(=\vphi) down to the EW scale μ0=v\mu_0 = v. The triviality bound is obtained by requiring that \l(\L) = \sqrt{4 \pi} which is the perturbative limit. We also study the effect of small changes in the UVBC on the triviality bound both in the presence and absence of a light radion.Comment: 9 pages, latex, 2 eps figure

    On Stability of the Three 3-brane Model

    Get PDF
    We show that the Goldberger-Wise mechanism for the three 3-brane scenario proposed by Kogan et al. stabilizes the radion. We find that the system of 3-branes stabilizes in such a way that the loss in the scale factor is insignificant. That is, the negative tension brane chooses to stay close to the visible brane

    Unitarity constraints on the stabilized Randall-Sundrum scenario

    Get PDF
    Recently proposed stabilization mechanism of the Randall-Sundrum metric gives rise to a scalar radion, which couples universally to matter with a weak interaction (1\simeq 1 TeV) scale. Demanding that gauge boson scattering as described by the effective low enerrgy theory be unitary upto a given scale leads to significant constraints on the mass of such a radion.Comment: 10 page Latex 2e file including 4 postscript figures. Accepted in Journal of Physics

    Analysis of the Problems Occurred Due to Partial Shading of Solar Photovoltaic Array and Probable Solutions

    Get PDF
    A solar panel is made up of solar cells where semiconductors made to react and give us a potential difference when solar energy falls on it. However, due to the internal and external interferences, many problems are faced by solar panels, like dust, partial shading by leaves or mud, etc. This paper aims at trying to find out the best possible solution for the partial shading problems when solar energy is harvested using a solar panel. The Series-Parallel configuration (SP) and the Total-Cross Tied configuration (TCT) connections of PV module have been analyzed using MATLAB

    Muon anomalous magnetic moment in string inspired extended family models

    Get PDF
    We propose a standard model minimal extension with two lepton weak SU(2) doublets and a scalar singlet to explain the deviation of the measured anomalous magnetic moment of the muon from the standard model expectation. This scheme can be naturally motivated in string inspired models such as E_6 and AdS/CFT.Comment: 9 pages, RevTeX, 2 figures, version to be published in Phys. Rev.
    corecore