16 research outputs found
Multi-Element Long Distance Dependencies: Using SPk Languages to Explore the Characteristics of Long-Distance Dependencies
In order to successfully model Long Distance Dependencies (LDDs) it is necessary to under-stand the full-range of the characteristics of the LDDs exhibited in a target dataset. In this paper, we use Strictly k-Piecewise languages to generate datasets with various properties. We then compute the characteristics of the LDDs in these datasets using mutual information and analyze the impact of factors such as (i) k, (ii) length of LDDs, (iii) vocabulary size, (iv) forbidden strings, and (v) dataset size. This analysis reveal that the number of interacting elements in a dependency is an important characteristic of LDDs. This leads us to the challenge of modelling multi-element long-distance dependencies. Our results suggest that attention mechanisms in neural networks may aide in modeling datasets with multi-element long-distance dependencies. However, we conclude that there is a need to develop more efficient attention mechanisms to address this issue
Using Regular Languages to Explore the Representational Capacity of Recurrent Neural Architectures
The presence of Long Distance Dependencies (LDDs) in sequential data poses significant challenges for computational models. Various recurrent neural architectures have been designed to mitigate this issue. In order to test these state-of-the-art architectures, there is growing need for rich benchmarking datasets. However, one of the drawbacks of existing datasets is the lack of experimental control with regards to the presence and/or degree of LDDs. This lack of control limits the analysis of model performance in relation to the specific challenge posed by LDDs. One way to address this is to use synthetic data having the properties of subregular languages. The degree of LDDs within the generated data can be controlled through the k parameter, length of the generated strings, and by choosing appropriate forbidden strings. In this paper, we explore the capacity of different RNN extensions to model LDDs, by evaluating these models on a sequence of SPk synthesized datasets, where each subsequent dataset exhibits a longer degree of LDD. Even though SPk are simple languages, the presence of LDDs does have significant impact on the performance of recurrent neural architectures, thus making them prime candidate in benchmarking tasks. © Springer Nature Switzerland AG 2018
English WordNet Taxonomic Random Walk Pseudo-Corpora
This is a resource description paper that describes the creation and properties of a set of pseudo-corpora generated artificially from a random walk over the English WordNet taxonomy. Our WordNet taxonomic random walk implementation allows the exploration of different random walk hyperparameters and the generation of a variety of different pseudo-corpora. We find that different combinations of the walk’s hyperparameters result in varying statistical properties of the generated pseudo-corpora. We have published a total of 81 pseudo-corpora that we have used in our previous research, but have not exhausted all possible combinations of hyperparameters, which is why we have also published a codebase that allows the generation of additional WordNet taxonomic pseudo-corpora as needed. Ultimately, such pseudo-corpora can be used to train taxonomic word embeddings, as a way of transferring taxonomic knowledge into a word embedding space
Examining the Limits of Predictability of Human Mobility
We challenge the upper bound of human-mobility predictability that is widely used to corroborate the accuracy of mobility prediction models. We observe that extensions of recurrent-neural network architectures achieve significantly higher prediction accuracy, surpassing this upper bound. Given this discrepancy, the central objective of our work is to show that the methodology behind the estimation of the predictability upper bound is erroneous and identify the reasons behind this discrepancy. In order to explain this anomaly, we shed light on several underlying assumptions that have contributed to this bias. In particular, we highlight the consequences of the assumed Markovian nature of human-mobility on deriving this upper bound on maximum mobility predictability. By using several statistical tests on three real-world mobility datasets, we show that human mobility exhibits scale-invariant long-distance dependencies, contrasting with the initial Markovian assumption. We show that this assumption of exponential decay of information in mobility trajectories, coupled with the inadequate usage of encoding techniques results in entropy inflation, consequently lowering the upper bound on predictability. We highlight that the current upper bound computation methodology based on Fano’s inequality tends to overlook the presence of long-range structural correlations inherent to mobility behaviors and we demonstrate its significance using an alternate encoding scheme. We further show the manifestation of not accounting for these dependencies by probing the mutual information decay in mobility trajectories. We expose the systematic bias that culminates into an inaccurate upper bound and further explain as to why the recurrent-neural architectures, designed to handle long-range structural correlations, surpass this upper limit on human mobility predictability
Synthetic, Yet Natural: Properties of WordNet Random Walk Corpora and the impact of rare words on embedding performance
Creating word embeddings that reflect semantic relationships encoded in lexical knowledge resources is an open challenge. One approach is to use a random walk over a knowledge graph to generate a pseudo-corpus and use this corpus to train embeddings. However, the effect of the shape of the knowledge graph on the generated pseudo-corpora, and on the resulting word embeddings, has not been studied. To explore this, we use English WordNet, constrained to the taxonomic (tree-like) portion of the graph, as a case study. We investigate the properties of the generated pseudo-corpora, and their impact on the resulting embeddings. We find that the distributions in the psuedo-corpora exhibit properties found in natural corpora, such as Zipf’s and Heaps’ law, and also ob- serve that the proportion of rare words in a pseudo-corpus affects the performance of its embeddings on word similarity
Generating Diverse and Meaningful Captions: Unsupervised Specificity Optimization for Image Captioning
Image Captioning is a task that requires models to acquire a multi-modal understanding of the world and to express this understanding in natural language text. While the state-of-the-art for this task has rapidly improved in terms of n-gram metrics, these models tend to output the same generic captions for similar images. In this work, we address this limitation and train a model that generates more diverse and specific captions through an unsupervised training approach that incorporates a learning signal from an Image Retrieval model. We summarize previous results and improve the state-of-the-art on caption diversity and novelty.
We make our source code publicly available online: https://github.com/AnnikaLindh/Diverse_and_Specific_Image_Captionin
Examining the Limits of Predictability of Human Mobility
We challenge the upper bound of human-mobility predictability that is widely used to corroborate the accuracy of mobility prediction models. We observe that extensions of recurrent-neural network architectures achieve significantly higher prediction accuracy, surpassing this upper bound. Given this discrepancy, the central objective of our work is to show that the methodology behind the estimation of the predictability upper bound is erroneous and identify the reasons behind this discrepancy. In order to explain this anomaly, we shed light on several underlying assumptions that have contributed to this bias. In particular, we highlight the consequences of the assumed Markovian nature of human-mobility on deriving this upper bound on maximum mobility predictability. By using several statistical tests on three real-world mobility datasets, we show that human mobility exhibits scale-invariant long-distance dependencies, contrasting with the initial Markovian assumption. We show that this assumption of exponential decay of information in mobility trajectories, coupled with the inadequate usage of encoding techniques results in entropy inflation, consequently lowering the upper bound on predictability. We highlight that the current upper bound computation methodology based on Fano’s inequality tends to overlook the presence of long-range structural correlations inherent to mobility behaviors and we demonstrate its significance using an alternate encoding scheme. We further show the manifestation of not accounting for these dependencies by probing the mutual information decay in mobility trajectories. We expose the systematic bias that culminates into an inaccurate upper bound and further explain as to why the recurrent-neural architectures, designed to handle long-range structural correlations, surpass this upper limit on human mobility predictability.</jats:p
Taxonomic Word Embeddings - Trained on English WordNet Random Walk Pseudo-Corpora
This archive contains a collection of computational models called word embeddings. These are vectors that contain numerical representations of words. They have been trained on pseudo-sentences generated artificially from a random walk over the English WordNet taxonomy, and thus reflect taxonomic knowledge about words (rather than contextual)
