13 research outputs found

    Decoherence due to thermal effects in two quintessential quantum systems

    Full text link
    Decoherence effects at finite temperature (T) are examined for two manifestly quantum systems: (i) Casimir forces between parallel plates that conduct along different directions, and (ii) a topological Aharonov-Bohm (AB) type force between fluxons in a superconductor. As we illustrate, standard path integral calculations suggest that thermal effects may remove the angular dependence of the Casimir force in case (i) with a decoherence time set by h/(k_{B} T) where h is Plank's constant and k_{B} is the Boltzmann constant. This prediction may be tested. The effect in case (ii) is due a phase shift picked by unpaired electrons upon encircling an odd number of fluxons. In principle, this effect may lead to small modifications in Abrikosov lattices. While the AB forces exist at extremely low temperatures, we find that thermal decoherence may strongly suppress the topological force at experimentally pertinent finite temperatures. It is suggested that both cases (i) and (ii) (as well as other examples briefly sketched) are related to a quantum version of the fluctuation-dissipation theorem.Comment: 15 pages, 2 figure

    Current driven rotating kink mode in a plasma column with a non-line-tied free end

    Get PDF
    First experimental measurements are presented for the kink instability in a linear plasma column which is insulated from an axial boundary by finite sheath resistivity. Instability threshold below the classical Kruskal-Shafranov threshold, axially asymmetric mode structure and rotation are observed. These are accurately reproduced by a recent kink theory, which includes axial plasma flow and one end of the plasma column that is free to move due to a non-line-tied boundary condition.Comment: 4 pages, 6 figure

    Ion orbits in electron shading damage

    No full text

    Phenomenological Theory of the Kink Instability in a Slender Plasma Column Physics of Plasmas PHENOMENOLOGICAL THEORY OF THE KINK INSTABILITY IN A SLENDER PLASMA COLUMN

    No full text
    Abstract When one deals with a plasma column whose radius a is much smaller than its length L, one can think of it as of a thin filament whose kink instability can be adequately described simply by a 2D displacement vector, ξ x =ξ x (z,t); ξ y =ξ y (z,t). Details of the internal structure of the column such as the current, density, and axial flow velocity distribution would be lumped into some phenomenological parameters. This approach is particularly efficient in the problems with non-ideal (sheath) boundary conditions (BC) at the end electrodes, with the finite plasma resistivity, and with a substantial axial flow. With the sheath BC imposed at one of the end-plates, we find instability in the domain well below the classical Kruskal-Shafranov limit. The presence of an axial flow causes the onset of rotation of the kink and strong axial "skewness" of the eigenfunction, with the perturbation amplitude increasing in the flow direction. We consider the limitations of the phenomenological approach and find that they are related to the steepness with which the plasma resistivity increases at the plasma boundary with vacuum
    corecore