3 research outputs found
Open-source, vendor-independent, automated multi-beat tissue Doppler echocardiography analysis
Current guidelines for measuring cardiac function by tissue Doppler recommend using multiple beats, but this has a time cost for human operators. We present an open-source, vendor-independent, drag-and-drop software capable of automating the measurement process. A database of ~8000 tissue Doppler beats (48 patients) from the septal and lateral annuli were analyzed by three expert echocardiographers. We developed an intensity- and gradient-based automated algorithm to measure tissue Doppler velocities. We tested its performance against manual measurements from the expert human operators. Our algorithm showed strong agreement with expert human operators. Performance was indistinguishable from a human operator: for algorithm, mean difference and SDD from the mean of human operators’ estimates 0.48?±?1.12 cm/s (R2?=?0.82); for the humans individually this was 0.43?±?1.11 cm/s (R2?=?0.84), ?0.88?±?1.12 cm/s (R2?=?0.84) and 0.41?±?1.30 cm/s (R2?=?0.78). Agreement between operators and the automated algorithm was preserved when measuring at either the edge or middle of the trace. The algorithm was 10-fold quicker than manual measurements (p?</p
Frame rate required for speckle tracking echocardiography: A quantitative clinical study with open-source, vendor-independent software
BackgroundAssessing left ventricular function with speckle tracking is useful in patient diagnosis but requires a temporal resolution that can follow myocardial motion. In this study we investigated the effect of different frame rates on the accuracy of speckle tracking results, highlighting the temporal resolution where reliable results can be obtained.Material and methods27 patients were scanned at two different frame rates at their resting heart rate. From all acquired loops, lower temporal resolution image sequences were generated by dropping frames, decreasing the frame rate by up to 10-fold.ResultsTissue velocities were estimated by automated speckle tracking. Above 40 frames/s the peak velocity was reliably measured. When frame rate was lower, the inter-frame interval containing the instant of highest velocity also contained lower velocities, and therefore the average velocity in that interval was an underestimate of the clinically desired instantaneous maximum velocity.ConclusionsThe higher the frame rate, the more accurately maximum velocities are identified by speckle tracking, until the frame rate drops below 40 frames/s, beyond which there is little increase in peak velocity. We provide in an online supplement the vendor-independent software we used for automatic speckle-tracked velocity assessment to help others working in this field.</p
Automatic detection of end-diastolic and end-systolic frames in 2D echocardiography
BackgroundCorrectly selecting the end-diastolic and end-systolic frames on a 2D echocardiogram is important and challenging, for both human experts and automated algorithms. Manual selection is time-consuming and subject to uncertainty, and may affect the results obtained, especially for advanced measurements such as myocardial strain.Methods and ResultsWe developed and evaluated algorithms which can automatically extract global and regional cardiac velocity, and identify end-diastolic and end-systolic frames. We acquired apical four-chamber 2D echocardiographic video recordings, each at least 10 heartbeats long, acquired twice at frame rates of 52 and 79 frames/s from 19 patients, yielding 38 recordings. Five experienced echocardiographers independently marked end-systolic and end-diastolic frames for the first 10 heartbeats of each recording. The automated algorithm also did this. Using the average of time points identified by five human operators as the reference gold standard, the individual operators had a root mean square difference from that gold standard of 46.5 ms. The algorithm had a root mean square difference from the human gold standard of 40.5 ms (P<.0001). Put another way, the algorithm-identified time point was an outlier in 122/564 heartbeats (21.6%), whereas the average human operator was an outlier in 254/564 heartbeats (45%).ConclusionAn automated algorithm can identify the end-systolic and end-diastolic frames with performance indistinguishable from that of human experts. This saves staff time, which could therefore be invested in assessing more beats, and reduces uncertainty about the reliability of the choice of frame.</p