848 research outputs found

    The CKM Matrix from Lattice QCD

    Full text link
    Lattice QCD plays an essential role in testing and determining the parameters of the CKM theory of flavor mixing and CP violation. Very high precisions are required for lattice calculations analysing CKM data; I discuss the prospects for achieving them. Lattice calculations will also play a role in investigating flavor mixing and CP violation beyond the Standard Model.Comment: To appear in Prog. Theor. Phys. Vol. 122, No.1 (Special Issue

    Progress in QCD Using Lattice Gauge Theory

    Full text link
    Review of results from lattice QCD of relevance to standard-model phenomenology, to appear in Annual Review of Nuclear and Particle Science. KEY WORDS: hadron masses, quark mixing (CKM) matrix, weak matrix elements, strong coupling constant.Comment: 41 pages LaTeX, FERMILAB-PUB-93/058-T. Figures and style file are uuencoded and appended. Figures embedded with epsf.sty, available from the serve

    Expected Precision of Higgs Boson Partial Widths within the Standard Model

    Full text link
    We discuss the sources of uncertainty in calculations of the partial widths of the Higgs boson within the Standard Model. The uncertainties come from two sources: the truncation of perturbation theory and the uncertainties in input parameters. We review the current status of perturbative calculations and note that these are already reaching the parts-per-mil level of accuracy for the major decay modes. The main sources of uncertainty will then come from the parametric dependences on alpha_s, m_b, and m_c. Knowledge of these parameters is systematically improvable through lattice gauge theory calculations. We estimate the precision that lattice QCD will achieve in the next decade and the corresponding precision of the Standard Model predictions for Higgs boson partial widths.Comment: 20 pages, 1 figure; v2: minor typo correction

    Nonperturbative ``Lattice Perturbation Theory''

    Get PDF
    We discuss a program for replacing standard perturbative methods with Monte Carlo simulations in short distance lattice gauge theory calculations.Comment: 3 pages, uuencoded Latex file, two embedded figures and .sty file include

    Field theoretic description of the abelian and non-abelian Josephson effect

    Full text link
    We formulate the Josephson effect in a field theoretic language which affords a straightforward generalization to the non-abelian case. Our formalism interprets Josephson tunneling as the excitation of pseudo-Goldstone bosons. We demonstrate the formalism through the consideration of a single junction separating two regions with a purely non-abelian order parameter and a sandwich of three regions where the central region is in a distinct phase. Applications to various non-abelian symmetry breaking systems in particle and condensed matter physics are given.Comment: 10 pages no figure
    • …
    corecore