8,438 research outputs found
On the Viability of Lattice Perturbation Theory
In this paper we show that the apparent failure of QCD lattice perturbation
theory to account for Monte Carlo measurements of perturbative quantities
results from choosing the bare lattice coupling constant as the expansion
parameter. Using instead ``renormalized'' coupling constants defined in terms
of physical quantities, like the heavy-quark potential, greatly enhances the
predictive power of lattice perturbation theory. The quality of these
predictions is further enhanced by a method for automatically determining the
coupling-constant scale most appropriate to a particular quantity. We present a
mean-field analysis that explains the large renormalizations relating lattice
quantities, like the coupling constant, to their continuum analogues. This
suggests a new prescription for designing lattice operators that are more
continuum-like than conventional operators. Finally, we provide evidence that
the scaling of physical quantities is asymptotic or perturbative already at
's as low as 5.7, provided the evolution from scale to scale is analyzed
using renormalized perturbation theory. This result indicates that reliable
simulations of (quenched) QCD are possible at these same low 's.Comment: 3
Spontaneous Symmetry Breaking and the Renormalization of the Chern-Simons Term
We calculate the one-loop perturbative correction to the coefficient of the
\cs term in non-abelian gauge theory in the presence of Higgs fields, with a
variety of symmetry-breaking structures. In the case of a residual
symmetry, radiative corrections do not change the coefficient of the \cs term.
In the case of an unbroken non-abelian subgroup, the coefficient of the
relevant \cs term (suitably normalized) attains an integral correction, as
required for consistency of the quantum theory. Interestingly, this coefficient
arises purely from the unbroken non-abelian sector in question; the orthogonal
sector makes no contribution. This implies that the coefficient of the \cs term
is a discontinuous function over the phase diagram of the theory.Comment: Version to be published in Phys Lett B., minor additional change
Field theoretic description of the abelian and non-abelian Josephson effect
We formulate the Josephson effect in a field theoretic language which affords
a straightforward generalization to the non-abelian case. Our formalism
interprets Josephson tunneling as the excitation of pseudo-Goldstone bosons. We
demonstrate the formalism through the consideration of a single junction
separating two regions with a purely non-abelian order parameter and a sandwich
of three regions where the central region is in a distinct phase. Applications
to various non-abelian symmetry breaking systems in particle and condensed
matter physics are given.Comment: 10 pages no figure
Development of radiation resistant electrical cable insulations
Two new polyethylene cable insulations have been formulated for nuclear applications and have been tested under gamma radiation. Both insulations are based on low density polyethylene, one with PbO and the other with Sb2O3 as additives. The test results show that the concept of using inorganic antioxidants to retard radiation initiated oxidation (RIO) is viable. PbO is more effective than Sb2O3 in minimizing RIO
Temporal trend in the transfer of Sellafield-derived 14C into different size fractions of the carbonate component of NE Irish Sea sediment
From 1994 onwards, 14C discharges from the Sellafield nuclear fuel reprocessing plant have been made largely to the Northeast Irish Sea. They represent the largest contributor to UK and European populations of the collective dose commitment derived from the entire nuclear industry discharges. Consequently, it is important to understand the long-term fate of 14C in the marine environment. Research undertaken in 2000 suggested that the carbonate component of Northeast Irish Sea sediments would increase in 14C activity as mollusc shells, which have become enriched in Sellafield-derived 14C, are broken down by physical processes including wave action and incorporated into intertidal and sub-tidal sediments. The current study, undertaken in 2011, tested this hypothesis. The results demonstrate significant increases in 14C enrichments found in whole mussel shells compared to those measured in 2000. Additionally, in 2000, there was an enrichment above ambient background within only the largest size fraction (>500 ÎĽm) of the intertidal inorganic sediment at Nethertown and Flimby (north of Sellafield). In comparison, the present study has demonstrated 14C enrichments above ambient background in most size fractions at sites up to 40 km north of Sellafield, confirming the hypothesis set out more than a decade ago
B and D Meson Decay Constants in Lattice QCD
We have calculated the decay constants of B and mesons with lattice QCD.
We use an improved action that takes light quark actions as a starting
point, tuned so that it can be directly applied at the physical masses of the
and quarks. Our results are f_B = 164 \err{+14}{-11} \pm 8 MeV,
f_{B_s} = 185 \err{+13}{-8} \pm 9 MeV, f_D = 194 \err{+14}{-10} \pm 10 MeV,
and f_{D_s} = 213 \err{+14}{-11} \pm 11 MeV in the quenched approximation.
The first error in each case is statistical, and the second is from
perturbation theory. We show that discretization errors are under control in
our approach, and smaller than our statistical errors. The effects of the
quenched approximation may raise our quenched result by up to 10%.Comment: 21 pages, 6 figure
- …