2,221 research outputs found
Should strategies to tackle childhood obesity also focus on mental health?
Childhood obesity continues to be a concern in the UK as in many other countries. Although there has been a ‘levelling off’ of BMI recorded through the National Childhood Measurement Programme in recent years the upward trend continues in older and more deprived children. Childhood obesity has been linked to poor mental health but whether psychological and social problems are a consequence or a contributor to obesity is unknown. Childhood obesity programmes that recognise and address psychosocial problems are proving useful in addressing obesity problems but there continued support is subject to continued funding. School Nurses, by measuring children’s height and weight, can identify children at risk of obesity but this is ineffective on its own and more support and advice is needed for School Nurses on how to tackle the complex conditions surrounding childhood obesity
Encouraging password manager adoption by meeting adopter self-determination needs
Password managers are a potential solution to the password conundrum, but adoption is paltry. We investigated the impact of a recommender application that harnessed the tenets of self-determination theory to encourage adoption of password managers. This theory argues that meeting a person's autonomy, relatedness and competence needs will make them more likely to act. To test the power of meeting these needs, we conducted a factorial experiment, in the wild. We satisfied each of the three self determination factors, and all individual combinations thereof, and observed short-term adoption of password managers. The Android recommender application was used by 470 participants, who were randomly assigned to one of the experimental or control conditions. Our analysis revealed that when all self-determination factors were satisfied, adoption was highest, while meeting only the autonomy or relatedness needs individually significantly improved the likelihood of adoption
Tap 'N' Shake: Gesture-based Smartwatch-Smartphone Communications System
Smartwatches have recently seen a surge in popularity, and the new technology presents a number of interesting opportunities and challenges, many of which have not been adequately dealt with by existing applications. Current smartwatch messaging systems fail to adequately address the problem of smartwatches requiring two-handed interactions. This paper presents Tap 'n' Shake, a novel gesture-based messaging system for Android smartwatches and smartphones addressing the problem of two-handed interactions by utilising various motion-gestures within the applications. The results of a user evaluation carried out with sixteen subjects demonstrated the usefulness and usability of using gestures over two-handed interactions for smartwatches. Additionally, the study provides insight into the types of gestures that subjects preferred to use for various actions in a smartwatch-smartphone messaging system
Evaluation of RPL’s Single Metric Objective Functions
In this paper, we evaluate the performance of RPL
(IPv6 Routing Protocol for Low Power and Lossy Networks)
based on the Objective Function being used to construct the
Destination Oriented Directed Acyclic Graph (DODAG). Using
the Cooja simulator, we compared Objective Function Zero (OF0)
with the Minimum Rank with Hysteresis Objective Function
(MRHOF) in terms of average power consumption, packet loss
ratio, and average end-to-end latency. Our study shows that RPL
performs better in terms of packet loss ratio and average endto-end
latency when MRHOF is used as an objective function.
However, the average power consumption is noticeably higher
compared to OF0
Requirement analysis for building practical accident warning systems based on vehicular ad-hoc networks
An Accident Warning System (AWS) is a safety application that provides collision avoidance notifications for next generation vehicles whilst Vehicular Ad-hoc Networks (VANETs) provide the communication functionality to exchange these notifi- cations. Despite much previous research, there is little agreement on the requirements for accident warning systems. In order to build a practical warning system, it is important to ascertain the system requirements, information to be exchanged, and protocols needed for communication between vehicles. This paper presents a practical model of an accident warning system by stipulating the requirements in a realistic manner and thoroughly reviewing previous proposals with a view to identify gaps in this area
Experiments Relevant to the Development of Laser Interferometric Gravitational Wave Detectors
The development of gravitational wave detectors has been in progress for approximately twenty-five years. As yet there has been no clear evidence for the successful detection of such propagating fluctuations in the curvature of spacetime, but the prospects seem good that detectors of sufficient sensitivity to detect gravitational waves of astrophysical origin can be constructed in the near future. The most promising form of detector is the long baseline laser interferometer, and prototypes are being developed at a number of sites around the world. A 10 metre prototype is currently being developed in Glasgow. This thesis is an account of work based on the Glasgow prototype. After an elementary introduction to the theoretical foundations of gravitational waves, various sources of gravitational radiation, the nature of their emitted signal and their strengths are considered. Suitable detectors and their possible sensitivities are reviewed. Noise sources which could limit the sensitivity of laser interferometer detectors and the constraints which these place on the design of the detector are discussed. Since the test masses in an interferometer detector must be freely suspended as pendulums, yet their orientation must be accurately controlled to maintain correct alignment of the optical cavities forming the interferometer, an active orientation control system was developed and installed on the Glasgow prototype. This system provides a high degree of positional and angular stabilisation at low frequencies while leaving the test mass essentially free at high frequencies. Some of the potential limitations and noise sources are noted and their magnitudes calculated. A digital recording system was designed and used to record data from the prototype detector at Glasgow. The effects of the detector's response are analysed and techniques to recover the gravitational wave signal from the recorded data are described. The analysis of some data recorded with this system is then reported. The pulse statistics of the interferometer are analysed and the implications for searches for millisecond pulses of gravitational waves are discussed. The results of a search for periodic signals in the detector output are presented. Various sources of contamination which may be present in the detector output are identified, limitations of the recorded data are noted, and techniques which may be used to reduce the importance of these effects are described
Stable Infrastructure-based Routing for Intelligent Transportation Systems
Intelligent Transportation Systems (ITSs) have been instrumental
in reshaping transportation towards safer roads, seamless
logistics, and digital business-oriented services under the umbrella of
smart city platforms. Undoubtedly, ITS applications will demand
stable routing protocols that not only focus on Inter-Vehicle Communications
but also on providing a fast, reliable and secure interface to
the infrastructure. In this paper, we propose a novel stable infrastructure-
based routing protocol for urban VANETs. It enables vehicles
proactively to maintain fresh routes towards Road-Side Units
(RSUs) while reactively discovering routes to nearby vehicles. It
builds routes from highly stable connected intersections using a selection
policy which uses a new intersection stability metric. Simulation
experiments performed with accurate mobility and propagation
models have confirmed the efficiency of the new protocol and its
adaptability to continuously changing network status in the urban
environment
Partnerships in Sustainability: The Transition Town Movement in Minnesota
Transition Towns is a citizen-led movement that seeks to address individual and societal dependence on fossil fuels and the need to reduce greenhouse gas production in order to fight climate change. The foundation of Transition is permaculture, a design process based on whole-systems thinking informed by the patterns and relationships found in nature. Since its inception in 2005, the Transition movement has spread worldwide, as people in small groups and across large towns look for ways to take practical action to fight climate change: from home vegetable gardens to weatherization work parties, from time banks and tool shares to renewable energy systems. Transition looks different in every location because it meets the needs and draws on the skills of the local community. This article looks at Transition in one community: The Twin Cities of Minneapolis and St. Paul, profiling several Transition Town groups
Permission-based Risk Signals for App Behaviour Characterization in Android Apps
With the parallel growth of the Android operating system and mobile malware, one of the ways to stay protected from mobile malware is by observing the permissions requested. However, without careful consideration of these permissions, users run the risk of an installed app being malware, without any warning that might characterize its nature. We propose a permission-based risk signal using a taxonomy of sensitive permissions. Firstly, we analyse the risk of an app based on the permissions it requests, using a permission sensitivity index computed from a risky permission set. Secondly, we evaluate permission mismatch by checking what an app requires against what it requests. Thirdly, we evaluate security rules based on our metrics to evaluate corresponding risks. We evaluate these factors using datasets of benign and malicious apps (43580 apps) and our result demonstrates that the proposed framework can be used to improve risk signalling of Android apps with a 95% accuracy
Tap'n'shake:gesture-based smartwatch-smartphone communications system
Smartwatches have recently seen a surge in popularity, and the new technology presents a number of interesting opportunities and challenges, many of which have not been adequately dealt with by existing applications. Current smartwatch messaging systems fail to adequately address the problem of smartwatches requiring two-handed interactions. This paper presents Tap 'n' Shake, a novel gesture-based messaging system for Android smartwatches and smartphones addressing the problem of two-handed interactions by utilising various motion-gestures within the applications. The results of a user evaluation carried out with sixteen subjects demonstrated the usefulness and usability of using gestures over two-handed interactions for smartwatches. Additionally, the study provides insight into the types of gestures that subjects preferred to use for various actions in a smartwatch-smartphone messaging system
- …