16 research outputs found

    Strong Gravitational Lensing and Dynamical Dark Energy

    Full text link
    We study the strong gravitational lensing properties of galaxy clusters obtained from N-body simulations with different kind of Dark Energy (DE). We consider both dynamical DE, due to a scalar field self--interacting through Ratra-Peebles (RP) or SUGRA potentials, and DE with constant negative w=p/rho= -1 (LCDM). We have 12 high resolution lensing systems for each cosmological model with a mass greater than 5x10^{14} solar masses. Using a Ray Shooting technique we make a detailed analysis of the lensing properties of these clusters with particular attention to the number of arcs and their properties (magnification, length and width). We found that the number of giant arcs produced by galaxy clusters changes in a considerable way from LCDM models to Dynamical Dark Energy models with a RP or SUGRA potentials. These differences originate from the different epochs of cluster formation and from the non-linearity of the strong lensing effect. We suggest the Strong lensing is one of the best tool to discriminate among different kind of Dark Energy.Comment: 8 pages, 11 figures. Lensing map resolution improved and effects of resolution discussed. One more RP model analysed. Accepted for publication by MNRA

    The dependence of tidal stripping efficiency on the satellite and host galaxy morphology

    Full text link
    In this paper we study the tidal stripping process for satellite galaxies orbiting around a massive host galaxy, and focus on its dependence on the morphology of both satellite and host galaxy. For this purpose, we use three different morphologies for the satellites: pure disc, pure bulge and a mixture bulge+disc. Two morphologies are used for the host galaxies: bulge+disc and pure bulge. We find that while the spheroidal stellar component experiences a constant power-law like mass removal, the disc is exposed to an exponential mass loss when the tidal radius of the satellite is of the same order of the disc scale length. This dramatic mass loss is able to completely remove the stellar component on time scale of 100 Myears. As a consequence two satellites with the same stellar and dark matter masses, on the same orbit could either retain considerable fraction of their stellar mass after 10 Gyrs or being completely destroyed, depending on their initial stellar morphology. We find that there are two characteristic time scales describing the beginning and the end of the disc removal, whose values are related to the size of the disc. This result can be easily incorporated in semi-analytical models. We also find that the host morphology and the orbital parameters also have an effect on the determining the mass removal, but they are of secondary importance with respect to satellite morphology. We conclude that satellite morphology has a very strong effect on the efficiency of stellar stripping and should be taken into account in modeling galaxy formation and evolution.Comment: 11 pages, 9 figures; accepted for publication in MNRA

    Alas, the dark matter structures were not that trivial

    Full text link
    The radial density profile of dark matter structures has been observed to have an almost universal behaviour in numerical simulations, however, the physical reason for this behaviour remains unclear. It has previously been shown that if the pseudo phase-space density, rho/sigma_d^epsilon, is a beautifully simple power-law in radius, with the "golden values" epsilon=3 and d=r (i.e., the phase-space density is only dependent on the radial component of the velocity dispersion), then one can analytically derive the radial variation of the mass profile, dispersion profile etc. That would imply, if correct, that we just have to explain why rho/sigma^3_r ~r^{-alpha}, and then we would understand everything about equilibrated DM structures. Here we use a set of simulated galaxies and clusters of galaxies to demonstrate that there are no such golden values, but that each structure instead has its own set of values. Considering the same structure at different redshifts shows no evolution of the phase-space parameters towards fixed points. There is also no clear connection between the halo virialized mass and these parameters. This implies that we still do not understand the origin of the profiles of dark matter structures.Comment: 4 pages, 3 figures, accepted for publication in ApJ

    Radial distribution and strong lensing statistics of satellite galaxies and substructure using high resolution LCDM hydrodynamical simulations

    Full text link
    We analyse the number density and radial distribution of substructures and satellite galaxies using cosmological simulations that follow the gas dynamics of a baryonic component, including shock heating, radiative cooling and star formation within the hierarchical concordance LCDM model. We find that the dissipation of the baryons greatly enhances the survival of subhaloes, expecially in the galaxy core, resulting in a radial distribution of satellite galaxies that closely follows the overall mass distribution in the inner part of the halo. Hydrodynamical simulations are necessary to resolve the adiabatic contraction and dense cores of galaxies, resulting in a total number of satellites a factor of two larger than found in pure dark matter simulation, in good agreement with the observed spatial distribution of satellite galaxies within galaxies and clusters. Convergence tests show that the cored distribution found by previous authors in pure N-body simulations was due to physical overmerging of dark matter only structures. We proceed to use a ray-shooting technique in order to study the impact of these additional substructures on the number of violations of the cusp caustic magnification relation. We develop a new approach to try to disentangle the effect of substructures from the intrinsic discreteness of N-Body simulations. Even with the increased number of substructures in the centres of galaxies, we are not able to reproduce the observed high numbers of discrepancies observed in the flux ratios of multiply lensed quasars.Comment: 11 pages, 15 figures, comparison with previous works updated, one more plot added, minor changes to match the accepted version by MNRA

    Concentration, Spin and Shape of Dark Matter Haloes as a Function of the Cosmological Model: WMAP1, WMAP3 and WMAP5 results

    Full text link
    We investigate the effects of changes in the cosmological parameters between the WMAP 1st, 3rd, and 5th year results on the structure of dark matter haloes. We use a set of simulations that cover 5 decades in halo mass ranging from the scales of dwarf galaxies (V_c ~30 km/s) to clusters of galaxies (V_c ~ 1000 km/s). We find that the concentration mass relation is a power law in all three cosmologies. However the slope is shallower and the zero point is lower moving from WMAP1 to WMAP5 to WMAP3. For haloes of mass log(M_200/Msun) = 10, 12, and 14 the differences in the concentration parameter between WMAP1 and WMAP3 are a factor of 1.55, 1.41, and 1.29, respectively. As we show, this brings the central densities of dark matter haloes in good agreement with the central densities of dwarf and low surface brightness galaxies inferred from their rotation curves, for both the WMAP3 and WMAP5 cosmologies. We also show that none of the existing toy models for the concentration-mass relation can reproduce our simulation results over the entire range of masses probed. In particular, the model of Bullock et al (B01) fails at the higher mass end (M > 1e13 Msun), while the NFW model of Navarro, Frenk & White (1997) fails dramatically at the low mass end (M < 1e12 Msun). We present a new model, based on a simple modification of that of B01, which reproduces the concentration-mass relations in our simulations over the entire range of masses probed (1e10 Msun < M < 1e15 Msun). Haloes in the WMAP3 cosmology (at a fixed mass) are more flatted compared to the WMAP1 cosmology, with a medium to long axis ration reduced by ~10 %. Finally, we show that the distribution of halo spin parameters is the same for all three cosmologies.Comment: 16 pages, 16 figures, references updated, minor changes. Accepted for publication on MNRAS. WMAP5 simulations available upon reques

    Star formation in mergers with cosmologically motivated initial conditions

    Get PDF
    We use semi-analytic models and cosmological merger trees to provide the initial conditions for multi-merger numerical hydrodynamic simulations, and exploit these simulations to explore the effect of galaxy interaction and merging on star formation (SF). We compute numerical realisations of twelve merger trees from z=1.5 to z=0. We include the effects of the large hot gaseous halo around all galaxies, following recent obervations and predictions of galaxy formation models. We find that including the hot gaseous halo has a number of important effects. Firstly, as expected, the star formation rate on long timescales is increased due to cooling of the hot halo and refuelling of the cold gas reservoir. Secondly, we find that interactions do not always increase the SF in the long term. This is partially due to the orbiting galaxies transferring gravitational energy to the hot gaseous haloes and raising their temperature. Finally we find that the relative size of the starburst, when including the hot halo, is much smaller than previous studies showed. Our simulations also show that the order and timing of interactions are important for the evolution of a galaxy. When multiple galaxies interact at the same time, the SF enhancement is less than when galaxies interact in series. All these effects show the importance of including hot gas and cosmologically motivated merger trees in galaxy evolution models.Comment: 19 pages, 15 figures, 6 tables. Accepted for publication in MNRA

    From Discs to Bulges: effect of mergers on the morphology of galaxies

    Get PDF
    We study the effect of mergers on the morphology of galaxies by means of the simulated merger tree approach first proposed by Moster et al. This method combines N-body cosmological simulations and semi-analytic techniques to extract realistic initial conditions for galaxy mergers. These are then evolved using high resolution hydrodynamical simulations, which include dark matter, stars, cold gas in the disc and hot gas in the halo. We show that the satellite mass accretion is not as effective as previously thought, as there is substantial stellar stripping before the final merger. The fraction of stellar disc mass transferred to the bulge is quite low, even in the case of a major merger, mainly due to the dispersion of part of the stellar disc mass into the halo. We confirm the findings of Hopkins et al., that a gas rich disc is able to survive major mergers more efficiently. The enhanced star formation associated with the merger is not localised to the bulge of galaxy, but a substantial fraction takes place in the disc too. The inclusion of the hot gas reservoir in the galaxy model contributes to reducing the efficiency of bulge formation. Overall, our findings suggest that mergers are not as efficient as previously thought in transforming discs into bulges. This possibly alleviates some of the tensions between observations of bulgeless galaxies and the hierarchical scenario for structure formation.Comment: MNRAS Accepted, 17 pages, 11 figures, 3 Table

    On the dependence of galaxy morphologies on galaxy mergers

    Get PDF
    The distribution of galaxy morphological types is a key test for models of galaxy formation and evolution, providing strong constraints on the relative contribution of different physical processes responsible for the growth of the spheroidal components. In this paper, we make use of a suite of semi-analytic models to study the efficiency of galaxy mergers in disrupting galaxy discs and building galaxy bulges. In particular, we compare standard prescriptions usually adopted in semi-analytic models, with new prescriptions proposed by Kannan et al., based on results from high-resolution hydrodynamical simulations, and we show that these new implementations reduce the efficiency of bulge formation through mergers. In addition, we compare our model results with a variety of observational measurements of the fraction of spheroid-dominated galaxies as a function of stellar and halo mass, showing that the present uncertainties in the data represent an important limitation to our understanding of spheroid formation. Our results indicate that the main tension between theoretical models and observations does not stem from the survival of purely disc structures (i.e. bulgeless galaxies), rather from the distribution of galaxies of different morphological types, as a function of their stellar mass.Comment: MNRAS in press, 11 pages, 5 figure
    corecore