17,150 research outputs found

    Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system

    Full text link
    We propose an efficient scheme for simulating the Lipkin-Meshkov-Glick (LMG) model with nitrogen-vacancy (NV) center ensembles in diamond magnetically coupled to superconducting coplanar waveguide cavities. With the assistance of external microwave driving fields, we show that the interaction of the NV spins can be easily controlled, and several types of the LMG model can be realized by tuning the different parameters. Under the thermal dynamical limit, the distinct non-equilibrium second order quantum phase transition of the spin ensemble can be achieved at the critical point. Furthermore, we show that the spin squeezed state can be generated by tailoring the LMG Hamiltonian to possess the two-axis counter-twisting form in this hybrid quantum system.Comment: 10 pages, 4 figures, Accepted for publication in PR

    Universal Thermoelectric Effect of Dirac Fermions in Graphene

    Full text link
    We numerically study the thermoelectric transports of Dirac fermions in graphene in the presence of a strong magnetic field and disorder. We find that the thermoelectric transport coefficients demonstrate universal behavior depending on the ratio between the temperature and the width of the disorder-broadened Landau levels(LLs). The transverse thermoelectric conductivity αxy\alpha_{xy} reaches a universal quantum value at the center of each LL in the high temperature regime, and it has a linear temperature dependence at low temperatures. The calculated Nernst signal has a peak at the central LL with heights of the order of kB/ek_B/e, and changes sign near other LLs, while the thermopower has an opposite behavior, in good agreement with experimental data. The validity of the generalized Mott relation between the thermoelectric and electrical transport coefficients is verified in a wide range of temperatures.Comment: 4 pages, 4 figures, published versio
    • …
    corecore