20,217 research outputs found
A concave pairwise fusion approach to subgroup analysis
An important step in developing individualized treatment strategies is to
correctly identify subgroups of a heterogeneous population, so that specific
treatment can be given to each subgroup. In this paper, we consider the
situation with samples drawn from a population consisting of subgroups with
different means, along with certain covariates. We propose a penalized approach
for subgroup analysis based on a regression model, in which heterogeneity is
driven by unobserved latent factors and thus can be represented by using
subject-specific intercepts. We apply concave penalty functions to pairwise
differences of the intercepts. This procedure automatically divides the
observations into subgroups. We develop an alternating direction method of
multipliers algorithm with concave penalties to implement the proposed approach
and demonstrate its convergence. We also establish the theoretical properties
of our proposed estimator and determine the order requirement of the minimal
difference of signals between groups in order to recover them. These results
provide a sound basis for making statistical inference in subgroup analysis.
Our proposed method is further illustrated by simulation studies and analysis
of the Cleveland heart disease dataset
On-line measurements of contents inside pipes using guided ultrasonic waves
Imperial Users onl
- …