408 research outputs found
Culturing Adult Stem Cells for Cell-Based Therapeutics: Neuroimmune Applications
Pluripotent stem cells can be successfully isolated from a variety of tissues from adult organisms. This fact opens the exciting possibility of cell-based therapies for a large number of clinical treatments. However, the development of optimized protocols to obtain, grow, and cryopreserve cells, as well as that of effective clinical treatment procedures, is no easy task. The therapeutic potential of cells expanded in vitro depends on a multitude of factors including isolation procedures, donor and tissue types, expansion and preservation methods, etc. Researchers are investing great efforts to determine which of these many variables significantly impact downstream performance of in vitro expanded stem cells by studying associated changes in molecular profiles and their effect on the host immune system. This chapter reviews the current status of stem cell production and its derivatives, which are paving the way to different treatments in the clinic. Due to the research interests of our labs, particular emphasis is placed on the potential benefits of stem cell-based therapeutics for the treatment of spinal cord injuries and the neuroimmune disease myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) not only derived from differentiation and cell engraftment mechanisms but also due to the anti-inflammatory and immunoregulatory capacities of these cells
Engineered axon tracts within tubular biohybrid scaffolds
Injuries to the nervous system that involve the disruption of axonal pathways are devastating to the individual and require specific tissue engineering strategies. Here we analyse a cells-biomaterials strategy to overcome the obstacles limiting axon regenerationin vivo, based on the combination of a hyaluronic acid (HA) single-channel tubular conduit filled with poly-L-lactide acid (PLA) fibres in its lumen, with pre-cultured Schwann cells (SCs) as cells supportive of axon extension. The HA conduit and PLA fibres sustain the proliferation of SC, which enhance axon growth acting as a feeder layer and growth factor pumps. The parallel unidirectional ensemble formed by PLA fibres and SC tries to recapitulate the directional features of axonal pathways in the nervous system. A dorsal root ganglion (DRG) explant is planted on one of the conduit's ends to follow axon outgrowth from the DRG. After a 21 d co-culture of the DRG + SC-seeded conduit ensemble, we analyse the axonal extension throughout the conduit by scanning, transmission electronic and confocal microscopy, in order to study the features of SC and the grown axons and their association. The separate effects of SC and PLA fibres on the axon growth are also experimentally addressed. The biohybrid thus produced may be considered a synthetic axonal pathway, and the results could be of use in strategies for the regeneration of axonal tracts
Mechanism and Consequences of The Impaired Hif-1α Response to Hypoxia in Human Proximal Tubular HK-2 Cells Exposed to High Glucose
Renal hypoxia and loss of proximal tubular cells (PTC) are relevant in diabetic nephropathy. Hypoxia
inhibits hypoxia-inducible factor-1α (HIF-1α) degradation, which leads to cellular adaptive responses
through HIF-1-dependent activation of gene hypoxia-responsive elements (HRE). However, the
diabetic microenvironment represses the HIF-1/HRE response in PTC. Here we studied the mechanism
and consequences of impaired HIF-1α regulation in human proximal tubular HK-2 cells incubated in
hyperglycemia. Inhibition at diferent levels of the canonical pathway of HIF-1α degradation did not
activate the HIF-1/HRE response under hyperglycemia, except when proteasome was inhibited. Further
studies suggested that hyperglycemia disrupts the interaction of HIF-1α with Hsp90, a known cause
of proteasomal degradation of HIF-1α. Impaired HIF-1α regulation in cells exposed to hyperglycemic,
hypoxic diabetic-like milieu led to diminished production of vascular endothelial growth factor-A
and inhibition of cell migration (responses respectively involved in tubular protection and repair).
These efects, as well as impaired HIF-1α regulation, were reproduced in normoglycemia in HK-2 cells
incubated with microparticles released by HK-2 cells exposed to diabetic-like milieu. In summary, these
results highlight the role of proteasome-dependent mechanisms of HIF-1α degradation on diabetesinduced HK-2 cells dysfunction and suggest that cell-derived microparticles may mediate negative efects of the diabetic milieu on PTCThis work was supported by grants SAF2014-53218-R from the Spanish Ministerio de Ciencia e Innovación
and RTI2018-095872-B-C21/ERDF by AEI. Coral Garcia-Pastor is the recipient of a FPU fellowship from the
University of Alcala
Mechanism and Consequences of The Impaired Hif-1alfa Response to Hypoxia in Human Proximal Tubular HK-2 Cells Exposed to High Glucose
Renal hypoxia and loss of proximal tubular cells (PTC ) are relevant in diabetic nephropathy. Hypoxia inhibits hypoxia-inducible factor-1? (HIF-1?) degradation, which leads to cellular adaptive responses through HIF-1-dependent activation of gene hypoxia-responsive elements (HRE). However, the diabetic microenvironment represses the HIF-1/HRE response in PTC. Here we studied the mechanism and consequences of impaired HIF-1? regulation in human proximal tubular HK-2 cells incubated in hyperglycemia. Inhibition at different levels of the canonical pathway of HIF-1? degradation did not activate the HIF-1/HRE response under hyperglycemia, except when proteasome was inhibited. Further studies suggested that hyperglycemia disrupts the interaction of HIF-1? with Hsp90, a known cause of proteasomal degradation of HIF-1?. Impaired HIF-1? regulation in cells exposed to hyperglycemic, hypoxic diabetic-like milieu led to diminished production of vascular endothelial growth factor-A and inhibition of cell migration (responses respectively involved in tubular protection and repair). These effects, as well as impaired HIF-1? regulation, were reproduced in normoglycemia in HK-2 cells incubated with microparticles released by HK-2 cells exposed to diabetic-like milieu. In summary, these results highlight the role of proteasome-dependent mechanisms of HIF-1? degradation on diabetes-induced HK-2 cells dysfunction and suggest that cell-derived microparticles may mediate negative effects of the diabetic milieu on PTC.Ministerio de Ciencia e Innovació
Amino modified metal-organic frameworks as pH-responsive nanoplatforms for safe delivery of camptothecin
[EN] MIL-100(Fe) and MIL-101(Fe) metal-organic frameworks (MOFs) are excellent vehicles for drug delivery systems (DDSs) due to their high biocompatibility and stability in physiological fluids, as well as their pore diameter in the mesoporous range. Although they are appropriate for the internal diffusion of 20-(S)-camptothecin (CPT), a strongly cytotoxic molecule with excellent antitumor activity, no stable delivery system has been proposed so far for this drug based in MOFs. We here present novel DDSs based in amine functionalized MIL-100(Fe) and MIL-101(Fe) nanoMOFs with covalently bonded CPT. These CPT nanoplatforms are able to incorporate almost 20% of this molecule and show high stability at physiological pH, with no non-specific release. Based on their surface charge, some of these CPT loaded nanoMOFs present improved cell internalization in in vitro experiments. Moreover, a strong response to acid pH is observed, with up to four fold drug discharge at pH 5, which boost intracellular release by endosomolytic activity. These novel DDSs will help to achieve safe delivery of the very cytotoxic CPT, allowing to reduce the therapeutic dose and minimizing drug secondary effects. (C) 2019 Elsevier Inc. All rights reserved.Financial support of the Spanish Ministry of Economy and Competitiveness (projects TEC2016-80976-R and SEV-2016-0683) is gratefully acknowledged. A.C.G. thanks the La Caixa Foundation for a Ph.D. scholarship. We fully appreciate the assistance of the Electron Microscopy Service of the Universitat Politecnica de Valencia.Cabrera-García, A.; Checa-Chavarria, E.; Rivero-Buceta, EM.; Moreno Manzano, V.; Fernandez Jover, E.; Botella Asuncion, P. (2019). Amino modified metal-organic frameworks as pH-responsive nanoplatforms for safe delivery of camptothecin. Journal of Colloid and Interface Science. 541:163-174. https://doi.org/10.1016/j.jcis.2019.01.042S16317454
Prácticas de laboratorio interdisciplinares de alto nivel científico con alumnos de diferentes grados universitarios guiados por WebQuest AICLE
[ES] Cada vez resulta más importante la colaboración entre expertos de diferentes áreas científicas multidisciplinares. En este trabajo, se han realizado prácticas de laboratorio agrupando alumnos de cuatro grados universitarios del área de biomedicina: Biotecnología, Ciencias del Mar, Veterinaria, Odontología y un grado impartido en inglés: Dentistry. Las asignaturas, que participaron en el estudio fueron: Biorreactores, Cultivos Celulares, Microbiología Marina, Microbiología Veterinaria, Microbiología de Odontología y Microbiology de Dentistry. Se abordó el tema de las síntesis química y por impresión 3D de biomateriales, su caracterización antimicrobiana por tres métodos complementarios (difusión en agar, contacto y formación de biofilm en biorreactor) y repoblación por cultivo con células madre adultas. Se diseñó una WebQuest con las instrucciones, laboratorio virtual y guías de prácticas en formato digital. Con motivo de llevar a cabo un Aprendizaje Integrado de Contenido y de Lenguas Extranjeras (AICLE), la WebQuest fue diseñada en inglés y los participantes realizaron una exposición en inglés al finalizar la experiencia. Las prácticas fueron realizadas en los laboratorios de la Universidad Católica de Valencia y en el Centro de Investigación Príncipe Felipe. Este procedimiento fue evaluado mediante un cuestionario de 14 preguntas, y mediante dos rúbricas para las memorias y exposiciones.[EN] Collaboration between experts from different scientific areas is becoming
more and more important. Thus, in this work, transversal laboratory sessions
have been carried out by students from four different university bachelor’s
degrees in the area of biomedicine: Biotechnology, Marine Sciences,
Veterinary, Dentistry and a degree taught in English: Dentistry. The subjects
that participated in the study were: bioreactors, cell cultures, marine
microbiology, veterinary microbiology and dentistry microbiology. Working
teams addressing a scientific topic such as chemical synthesis and 3D printing
of biomaterials, their antimicrobial characterization by three complementary
methods (diffusion in agar, contact and biofilm formation in bioreactor) and
repopulation by adult stem cell culture. A WebQuest was designed with the
instructions, virtual laboratory and laboratory sessions guides in digital
format. In order to carry out a Content and Language Integrated Learning
(CLIL), the WebQuest was designed in English and the participants made a
presentation in English at the end of this experience. The laboratory sessions
were carried out in the laboratories of the Catholic University of Valencia and
in the Príncipe Felipe Research Center. This procedure was evaluated through
a questionnaire of 14 questions, and by means of two rubrics used for the
reports and expositions.Serrano-Aroca, Á.; Frígols, B.; Martí, M.; Ingresa-Capaccioni, S.; Moreno-Manzano, V. (2019). Prácticas de laboratorio interdisciplinares de alto nivel científico con alumnos de diferentes grados universitarios guiados por WebQuest AICLE. En IN-RED 2019. V Congreso de Innovación Educativa y Docencia en Red. Editorial Universitat Politècnica de València. 141-155. https://doi.org/10.4995/INRED2019.2019.10365OCS14115
PSMA-Targeted Mesoporous Silica Nanoparticles for Selective Intracellular Delivery of Docetaxel in Prostate Cancer Cells
[EN] Although docetaxel is currently broadly used in prostate cancer treatment, poor water solubility and systemic toxicity limit the dose and duration of therapy. In this context, although different nanoplatforms have been proposed to overcome these issues, selective therapy needs developing methodologies to target malignant cells and minimizing the impact on healthy tissue. We here present a novel drug delivery system obtained by covalent conjugation of docetaxel and an anti-prostate specific membrane antigen (PSMA) molecule (anti-FOLH1 monoclonal antibody, clone C803N) over mesoporous silica nanoparticles. This conjugate remains stable in physiological medium and shows high selectivity for LNCaP, a specific cell line that overexpresses PSMA. As a consequence, cell internalization is increased by 25%. Furthermore, cytotoxic activity of the targeted system increases by 2-fold with regard to nontargeted nanoparticles and by 2 orders with regard to the naked drug. Conversely, no targeting effect is observed over PC3, a nonbearing PSMA cell line. We expect that this therapeutic system shows strong potential for treating nonmetastatic prostate cancer, mostly through intraprostatic administration.Financial support from the Spanish Ministry of Economy and Competitiveness (projects MAT2015-66666-C3-2-R, TEC2016-80976-R, and SEV-2016-0683) and the Generalitat Valenciana (project PROMETEO/2017/060) is gratefully acknowledged. We appreciate the assistance of the Electron Microscopy Service of the Universitat Politecnica de Valencia.Rivero-Buceta, EM.; Vidaurre Agut, CM.; Vera Donoso, CD.; Benlloch Baviera, JM.; Moreno Manzano, V.; Botella Asuncion, P. (2019). PSMA-Targeted Mesoporous Silica Nanoparticles for Selective Intracellular Delivery of Docetaxel in Prostate Cancer Cells. ACS Omega. 4(1):1281-1291. https://doi.org/10.1021/acsomega.8b02909S128112914
Optogenetic Stimulation Array for Confocal Microscopy Fast Transient Monitoring
[EN] Optogenetics is an emerging discipline with multiple applications in neuroscience, allowing to study neuronal pathways or serving for therapeutic applications such as in the treatment of anxiety disorder, autism spectrum disorders (ASDs), or Parkinson's disease. More recently optogenetics is opening its way also to stem cell-based therapeutic applications for neuronal regeneration after stroke or spinal cord injury. The results of optogenetic stimulation are usually evaluated by immunofluorescence or flow cytometry, and the observation of transient responses after stimulation, as in cardiac electrophysiology studies, by optical microscopy. However, certain phenomena, such as the ultra-fast calcium waves acquisition upon simultaneous optogenetics, are beyond the scope of current instrumentation, since they require higher image resolution in real-time, employing for instance time-lapse confocal microscopy. Therefore, in this work, an optogenetic stimulation matrix controllable from a graphical user interface has been developed for its use with a standard 24-well plate for an inverted confocal microscope use and validated by using a photoactivable adenyl cyclase (bPAC) overexpressed in rat fetal cortical neurons and the consequent calcium waves propagation upon 100 ms pulsed blue light stimulation.This work was supported in part by MCIN/AEI//10.13039/5011000110-33 under Grants PID2021-126304OB-C44 and PID2021-124359OB-I00, in part by the ERDF A Way of Making Europe, and in part by under Fet Open Program under Project 964562 H2020. The work of Beatriz Martinez-Rojas was supported by the Conselleria de Educacion, Investigacion, Cultura y Deporte de la Generalitat Valenciana and the European Social Fundation under Grant ACIF/2019/120. The work of Javier Monreal-Trigo andJose Manuel Terres-Haro was supported by the Spanish Ministry of Science,Innovation, and Universities for their Doctoral under Grants FPU17/03239 and FPU17/03800.Monreal-Trigo, J.; Terrés-Haro, JM.; Martínez-Rojas, B.; Sánchez-Martín, MDM.; Giraldo-Reboloso, E.; Moreno Manzano, V.; Alcañiz Fillol, M. (2022). Optogenetic Stimulation Array for Confocal Microscopy Fast Transient Monitoring. IEEE Transactions on Biomedical Circuits and Systems. 16(6):1397-1405. https://doi.org/10.1109/TBCAS.2022.32265581397140516
Biohybrids for spinal cord injury repair
This is the peer reviewed version of the following article: Martínez-Ramos, C, Doblado, LR, Mocholi, EL, et al. Biohybrids for spinal cord injury repair. J Tissue Eng Regen Med. 2019; 13: 509-521, which has been published in final form at https://doi.org/10.1002/term.2816. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Spinal cord injuries (SCIs) result in the loss of sensory and motor function with massive cell death and axon degeneration. We have previously shown that transplantation of spinal cord-derived ependymal progenitor cells (epSPC) significantly improves functional recovery after acute and chronic SCI in experimental models, via neuronal differentiation and trophic glial cell support. Here, we propose an improved procedure based on transplantation of epSPC in a tubular conduit of hyaluronic acid containing poly (lactic acid) fibres creating a biohybrid scaffold. In vitro analysis showed that the poly (lactic acid) fibres included in the conduit induce a preferential neuronal fate of the epSPC rather than glial differentiation, favouring elongation of cellular processes. The safety and efficacy of the biohybrid implantation was evaluated in a complete SCI rat model. The conduits allowed efficient epSPC transfer into the spinal cord, improving the preservation of the neuronal tissue by increasing the presence of neuronal fibres at the injury site and by reducing cavities and cyst formation. The biohybrid-implanted animals presented diminished astrocytic reactivity surrounding the scar area, an increased number of preserved neuronal fibres with a horizontal directional pattern, and enhanced coexpression of the growth cone marker GAP43. The biohybrids offer an improved method for cell transplantation with potential capabilities for neuronal tissue regeneration, opening a promising avenue for cell therapies and SCI treatment.Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Grant/Award Number: MAT2015-66666-C3-1-R
MINECO/FEDER MAT2015-66666-C3-2-R
MINECO/FEDER; Spanish Ministry of Education, Culture and Sports through Laura Rodriguez Doblado, Grant/Award Number: FPU15/04975Martínez-Ramos, C.; Rodriguez Doblado, L.; López Mocholi, E.; Alastrue-Agudo, A.; Sánchez Petidier, M.; Giraldo-Reboloso, E.; Monleón Pradas, M.... (2019). Biohybrids for spinal cord injury repair. Journal of Tissue Engineering and Regenerative Medicine. 13(3):509-521. https://doi.org/10.1002/term.2816S509521133Ahuja, C. S., & Fehlings, M. (2016). Concise Review: Bridging the Gap: Novel Neuroregenerative and Neuroprotective Strategies in Spinal Cord Injury. STEM CELLS Translational Medicine, 5(7), 914-924. doi:10.5966/sctm.2015-0381Alastrue-Agudo, A., Erceg, S., Cases-Villar, M., Bisbal-Velasco, V., Griffeth, R. J., Rodriguez-Jiménez, F. J., & Moreno-Manzano, V. (2014). Experimental Cell Transplantation for Traumatic Spinal Cord Injury Regeneration: Intramedullar or Intrathecal Administration. Methods in Molecular Biology, 23-35. doi:10.1007/978-1-4939-1435-7_3Alastrue-Agudo, A., Rodriguez-Jimenez, F., Mocholi, E., De Giorgio, F., Erceg, S., & Moreno-Manzano, V. (2018). FM19G11 and Ependymal Progenitor/Stem Cell Combinatory Treatment Enhances Neuronal Preservation and Oligodendrogenesis after Severe Spinal Cord Injury. International Journal of Molecular Sciences, 19(1), 200. doi:10.3390/ijms19010200Alfaro-Cervello, C., Soriano-Navarro, M., Mirzadeh, Z., Alvarez-Buylla, A., & Garcia-Verdugo, J. M. (2012). Biciliated ependymal cell proliferation contributes to spinal cord growth. The Journal of Comparative Neurology, 520(15), 3528-3552. doi:10.1002/cne.23104Assunção-Silva, R. C., Gomes, E. D., Sousa, N., Silva, N. A., & Salgado, A. J. (2015). Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells International, 2015, 1-24. doi:10.1155/2015/948040BASSO, D. M., BEATTIE, M. S., & BRESNAHAN, J. C. (1995). A Sensitive and Reliable Locomotor Rating Scale for Open Field Testing in Rats. Journal of Neurotrauma, 12(1), 1-21. doi:10.1089/neu.1995.12.1Bonner, J. F., & Steward, O. (2015). Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells. Brain Research, 1619, 115-123. doi:10.1016/j.brainres.2015.01.006Collins, M. N., & Birkinshaw, C. (2013). Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydrate Polymers, 92(2), 1262-1279. doi:10.1016/j.carbpol.2012.10.028Donnelly, D. J., & Popovich, P. G. (2008). Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Experimental Neurology, 209(2), 378-388. doi:10.1016/j.expneurol.2007.06.009Erceg, S., Ronaghi, M., Oria, M., García Roselló, M., Aragó, M. A. P., Lopez, M. G., … Stojkovic, M. (2010). Transplanted Oligodendrocytes and Motoneuron Progenitors Generated from Human Embryonic Stem Cells Promote Locomotor Recovery After Spinal Cord Transection. STEM CELLS, 28(9), 1541-1549. doi:10.1002/stem.489Gómez-Villafuertes, R., Rodríguez-Jiménez, F. J., Alastrue-Agudo, A., Stojkovic, M., Miras-Portugal, M. T., & Moreno-Manzano, V. (2015). Purinergic Receptors in Spinal Cord-Derived Ependymal Stem/Progenitor Cells and Their Potential Role in Cell-Based Therapy for Spinal Cord Injury. Cell Transplantation, 24(8), 1493-1509. doi:10.3727/096368914x682828Hesp, Z. C., Goldstein, E. A., Miranda, C. J., Kaspar, B. K., & McTigue, D. M. (2015). Chronic Oligodendrogenesis and Remyelination after Spinal Cord Injury in Mice and Rats. Journal of Neuroscience, 35(3), 1274-1290. doi:10.1523/jneurosci.2568-14.2015Kjell, J., & Olson, L. (2016). Rat models of spinal cord injury: from pathology to potential therapies. Disease Models & Mechanisms, 9(10), 1125-1137. doi:10.1242/dmm.025833Kumar, P., Choonara, Y., Modi, G., Naidoo, D., & Pillay, V. (2015). Multifunctional Therapeutic Delivery Strategies for Effective Neuro-Regeneration Following Traumatic Spinal Cord Injury. Current Pharmaceutical Design, 21(12), 1517-1528. doi:10.2174/1381612821666150115152323Li, G., Che, M.-T., Zhang, K., Qin, L.-N., Zhang, Y.-T., Chen, R.-Q., … Zeng, Y.-S. (2016). Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Biomaterials, 83, 233-248. doi:10.1016/j.biomaterials.2015.11.059Li, X., & Dai, J. (2018). Bridging the gap with functional collagen scaffolds: tuning endogenous neural stem cells for severe spinal cord injury repair. Biomaterials Science, 6(2), 265-271. doi:10.1039/c7bm00974gLiang, Y., Walczak, P., & Bulte, J. W. M. (2013). The survival of engrafted neural stem cells within hyaluronic acid hydrogels. Biomaterials, 34(22), 5521-5529. doi:10.1016/j.biomaterials.2013.03.095Lim, S. H., Liu, X. Y., Song, H., Yarema, K. J., & Mao, H.-Q. (2010). The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells. Biomaterials, 31(34), 9031-9039. doi:10.1016/j.biomaterials.2010.08.021Liu, C., Huang, Y., Pang, M., Yang, Y., Li, S., Liu, L., … Liu, B. (2015). Tissue-Engineered Regeneration of Completely Transected Spinal Cord Using Induced Neural Stem Cells and Gelatin-Electrospun Poly (Lactide-Co-Glycolide)/Polyethylene Glycol Scaffolds. PLOS ONE, 10(3), e0117709. doi:10.1371/journal.pone.0117709Lu, P., Wang, Y., Graham, L., McHale, K., Gao, M., Wu, D., … Tuszynski, M. H. (2012). Long-Distance Growth and Connectivity of Neural Stem Cells after Severe Spinal Cord Injury. Cell, 150(6), 1264-1273. doi:10.1016/j.cell.2012.08.020Morita, S., & Miyata, S. (2012). Synaptic localization of growth-associated protein 43 in cultured hippocampal neurons during synaptogenesis. Cell Biochemistry and Function, 31(5), 400-411. doi:10.1002/cbf.2914Ortuño-Lizarán, I., Vilariño-Feltrer, G., Martínez-Ramos, C., Pradas, M. M., & Vallés-Lluch, A. (2016). Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication, 8(4), 045011. doi:10.1088/1758-5090/8/4/045011Raspa, A., Marchini, A., Pugliese, R., Mauri, M., Maleki, M., Vasita, R., & Gelain, F. (2016). A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration. Nanoscale, 8(1), 253-265. doi:10.1039/c5nr03698dRequejo-Aguilar, R., Alastrue-Agudo, A., Cases-Villar, M., Lopez-Mocholi, E., England, R., Vicent, M. J., & Moreno-Manzano, V. (2017). Combined polymer-curcumin conjugate and ependymal progenitor/stem cell treatment enhances spinal cord injury functional recovery. Biomaterials, 113, 18-30. doi:10.1016/j.biomaterials.2016.10.032Rodriguez-Jimenez, F. J., Alastrue, A., Stojkovic, M., Erceg, S., & Moreno-Manzano, V. (2016). Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells. Cell and Tissue Research, 365(2), 295-307. doi:10.1007/s00441-016-2421-ySimitzi, C., Ranella, A., & Stratakis, E. (2017). Controlling the morphology and outgrowth of nerve and neuroglial cells: The effect of surface topography. Acta Biomaterialia, 51, 21-52. doi:10.1016/j.actbio.2017.01.023Steward, O., Sharp, K. G., Yee, K. M., Hatch, M. N., & Bonner, J. F. (2014). Characterization of Ectopic Colonies That Form in Widespread Areas of the Nervous System with Neural Stem Cell Transplants into the Site of a Severe Spinal Cord Injury. Journal of Neuroscience, 34(42), 14013-14021. doi:10.1523/jneurosci.3066-14.2014Stokols, S., & Tuszynski, M. H. (2006). Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials, 27(3), 443-451. doi:10.1016/j.biomaterials.2005.06.039Straley, K. S., Foo, C. W. P., & Heilshorn, S. C. (2010). Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries. Journal of Neurotrauma, 27(1), 1-19. doi:10.1089/neu.2009.0948Theodore, N., Hlubek, R., Danielson, J., Neff, K., Vaickus, L., Ulich, T. R., & Ropper, A. E. (2016). First Human Implantation of a Bioresorbable Polymer Scaffold for Acute Traumatic Spinal Cord Injury. Neurosurgery, 79(2), E305-E312. doi:10.1227/neu.0000000000001283Tian, L., Prabhakaran, M. P., & Ramakrishna, S. (2015). Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regenerative Biomaterials, 2(1), 31-45. doi:10.1093/rb/rbu017Vilariño-Feltrer, G., Martínez-Ramos, C., Monleón-de-la-Fuente, A., Vallés-Lluch, A., Moratal, D., Barcia Albacar, J. A., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199-211. doi:10.1016/j.actbio.2015.10.040Vismara, I., Papa, S., Rossi, F., Forloni, G., & Veglianese, P. (2017). Current Options for Cell Therapy in Spinal Cord Injury. Trends in Molecular Medicine, 23(9), 831-849. doi:10.1016/j.molmed.2017.07.005Wen, Y., Yu, S., Wu, Y., Ju, R., Wang, H., Liu, Y., … Xu, Q. (2015). Spinal cord injury repair by implantation of structured hyaluronic acid scaffold with PLGA microspheres in the rat. Cell and Tissue Research, 364(1), 17-28. doi:10.1007/s00441-015-2298-1Wilson, J. R., & Fehlings, M. G. (2011). Emerging Approaches to the Surgical Management of Acute Traumatic Spinal Cord Injury. Neurotherapeutics, 8(2), 187-194. doi:10.1007/s13311-011-0027-3Xie, J., Liu, W., MacEwan, M. R., Bridgman, P. C., & Xia, Y. (2014). Neurite Outgrowth on Electrospun Nanofibers with Uniaxial Alignment: The Effects of Fiber Density, Surface Coating, and Supporting Substrate. ACS Nano, 8(2), 1878-1885. doi:10.1021/nn406363
A Hyaluronic Acid Demilune Scaffold and Polypyrrole-Coated Fibers Carrying Embedded Human Neural Precursor Cells and Curcumin for Surface Capping of Spinal Cord Injuries
[EN] Tissue engineering, including cell transplantation and the application of biomaterials and bioactive molecules, represents a promising approach for regeneration following spinal cord injury (SCI). We designed a combinatorial tissue-engineered approach for the minimally invasive treatment of SCI¿a hyaluronic acid (HA)-based scaffold containing polypyrrole-coated fibers (PPY) combined with the RAD16-I self-assembling peptide hydrogel (Corning® PuraMatrix¿peptide hydrogel (PM)), human induced neural progenitor cells (iNPCs), and a nanoconjugated form of curcumin (CURC).
In vitro cultures demonstrated that PM preserves iNPC viability and the addition of CURC reduces apoptosis and enhances the outgrowth of Nestin-positive neurites from iNPCs, compared to nonembedded iNPCs. The treatment of spinal cord organotypic cultures also demonstrated that CURC enhances cell migration and prompts a neuron-like morphology of embedded iNPCs implanted over the tissue slices. Following sub-acute SCI by traumatic contusion in rats, the implantation of PMembedded iNPCs and CURC with PPY fibers supported a significant increase in neuro-preservation (as measured by greater III-tubulin staining of neuronal fibers) and decrease in the injured area (as measured by the lack of GFAP staining). This combination therapy also restricted platelet-derived growth factor expression, indicating a reduction in fibrotic pericyte invasion. Overall, these findings support PM-embedded iNPCs with CURC placed within an HA demilune scaffold containing PPY fibers as a minimally invasive combination-based alternative to cell transplantation alone.This research was funded by the Science by Women program, Women for Africa Foundation to H.E. and the grants FEDER/Ministerio de Ciencia e Innovacion-Agencia Estatal de Investigacion [RTI2018-095872-B-C21 and -C22/ERDF]; Part of the equipment employed in this work was funded by Generalitat Valenciana and cofinanced with ERDF funds (OP ERDF of Comunitat Valenciana 2014-2020). RISEUP project FetOpen in H2020 Program: H2020-FETOPEN-2018-2019-2020-01.Elkhenany, H.; Bonilla, P.; Giraldo-Reboloso, E.; Alastrue Agudo, A.; Edel, MJ.; Vicent, MJ.; Gisbert-Roca, F.... (2021). A Hyaluronic Acid Demilune Scaffold and Polypyrrole-Coated Fibers Carrying Embedded Human Neural Precursor Cells and Curcumin for Surface Capping of Spinal Cord Injuries. Biomedicines. 9(12):1-19. https://doi.org/10.3390/biomedicines9121928S11991
- …