49 research outputs found

    Un modello di programmazione parallela per applicazioni adattive e Context-Aware

    Get PDF
    La tesi affronta le problematiche di realizzazione di applicazioni parallele ad alte prestazioni adattive al contesto. Nella tesi viene analizzato un approccio generico alla Context Awareness e viene descritta in particolar modo una possibile estensione del modello di programmazione parallela ASSIST, che prende nome di ASSISTANT (ASSIST with Adaptivity and coNText awareness). Del modello ASSISTANT viene data una valutazione qualitativa della sua utilitĂ  mediante l'emulazione dei meccanismi di adattivitĂ  descritti nella tesi con la versione di ASSIST attuale

    Keep Calm and React with Foresight: Strategies for Low-latency and Energy-efficient Elastic Data Stream Processing

    Get PDF
    This paper addresses the problem of designing scaling strategies for elastic data stream processing. Elasticity allows applications to rapidly change their configuration on-the-fly (e.g., the amount of used resources) in response to dynamic workload fluctuations. In this work we face this problem by adopting the Model Predictive Control technique, a control-theoretic method aimed at finding the optimal application configuration along a limited prediction horizon in the future by solving an online optimization problem. Our control strategies are designed to address latency constraints, using Queueing Theory models, and energy consumption by changing the number of used cores and the CPU frequency through the Dynamic Voltage and Frequency Scaling (DVFS) support available in the modern multicore CPUs. The proactive capabilities, in addition to the latency- and energy-awareness, represent the novel features of our approach. To validate our methodology, we develop a thorough set of experiments on a high-frequency trading application. The results demonstrate the high-degree of flexibility and configurability of our approach, and show the effectiveness of our elastic scaling strategies compared with existing state-of-the-art techniques used in similar scenarios

    Proactive elasticity and energy awareness in data stream processing

    Get PDF
    Data stream processing applications have a long running nature (24hr/7d) with workload conditions that may exhibit wide variations at run-time. Elasticity is the term coined to describe the capability of applications to change dynamically their resource usage in response to workload fluctuations. This paper focuses on strategies for elastic data stream processing targeting multicore systems. The key idea is to exploit Model Predictive Control, a control-theoretic method that takes into account the system behavior over a future time horizon in order to decide the best reconfiguration to execute. We design a set of energy-aware proactive strategies, optimized for throughput and latency QoS requirements, which regulate the number of used cores and the CPU frequency through the Dynamic Voltage and Frequency Scaling (DVFS) support offered by modern multicore CPUs. We evaluate our strategies in a high-frequency trading application fed by synthetic and real-world workload traces. We introduce specific properties to effectively compare different elastic approaches, and the results show that our strategies are able to achieve the best outcome

    A Control-Theoretic Methodology for Adaptive Structured Parallel Computations

    Get PDF
    Adaptivity for distributed parallel applications is an essential feature whose impor- tance has been assessed in many research fields (e.g. scientific computations, large- scale real-time simulation systems and emergency management applications). Especially for high-performance computing, this feature is of special interest in order to properly and promptly respond to time-varying QoS requirements, to react to uncontrollable environ- mental effects influencing the underlying execution platform and to efficiently deal with highly irregular parallel problems. In this scenario the Structured Parallel Programming paradigm is a cornerstone for expressing adaptive parallel programs: the high-degree of composability of parallelization schemes, their QoS predictability formally expressed by performance models, are basic tools in order to introduce dynamic reconfiguration processes of adaptive applications. These reconfigurations are not only limited to imple- mentation aspects (e.g. parallelism degree modifications), but also parallel versions with different structures can be expressed for the same computation, featuring different levels of performance, memory utilization, energy consumption, and exploitation of the memory hierarchies. Over the last decade several programming models and research frameworks have been developed aimed at the definition of tools and strategies for expressing adaptive parallel applications. Notwithstanding this notable research effort, properties like the optimal- ity of the application execution and the stability of control decisions are not sufficiently studied in the existing work. For this reason this thesis exploits a pioneer research in the context of providing formal theoretical tools founded on Control Theory and Game Theory techniques. Based on these approaches, we introduce a formal model for control- ling distributed parallel applications represented by computational graphs of structured parallelism schemes (also called skeleton-based parallelism). Starting out from the performance predictability of structured parallelism schemes, in this thesis we provide a formalization of the concept of adaptive parallel module per- forming structured parallel computations. The module behavior is described in terms of a Hybrid System abstraction and reconfigurations are driven by a Predictive Control ap- proach. Experimental results show the effectiveness of this work, in terms of execution cost reduction as well as the stability degree of a system reconfiguration: i.e. how long a reconfiguration choice is useful for targeting the required QoS levels. This thesis also faces with the issue of controlling large-scale distributed applications composed of several interacting adaptive components. After a panoramic view of the existing control-theoretic approaches (e.g. based on decentralized, distributed or hierar- chical structures of controllers), we introduce a methodology for the distributed predictive control. For controlling computational graphs, the overall control problem consists in a set of coupled control sub-problems for each application module. The decomposition is- sue has a twofold nature: first of all we need to model the coupling relationships between control sub-problems, furthermore we need to introduce proper notions of negotiation and convergence in the control decisions collectively taken by the parallel modules of the application graph. This thesis provides a formalization through basic concepts of Non-cooperative Games and Cooperative Optimization. In the notable context of the dis- tributed control of performance and resource utilization, we exploit a formal description of the control problem providing results for equilibrium point existence and the compari- son of the control optimality with different adaptation strategies and interaction protocols. Discussions and a first validation of the proposed techniques are exploited through exper- iments performed in a simulation environment

    Parallel Continuous Preference Queries over Out-of-Order and Bursty Data Streams

    Get PDF
    Techniques to handle traffic bursts and out-of-order arrivals are of paramount importance to provide real-time sensor data analytics in domains like traffic surveillance, transportation management, healthcare and security applications. In these systems the amount of raw data coming from sensors must be analyzed by continuous queries that extract value-added information used to make informed decisions in real-time. To perform this task with timing constraints, parallelism must be exploited in the query execution in order to enable the real-time processing on parallel architectures. In this paper we focus on continuous preference queries, a representative class of continuous queries for decision making, and we propose a parallel query model targeting the efficient processing over out-of-order and bursty data streams. We study how to integrate punctuation mechanisms in order to enable out-of-order processing. Then, we present advanced scheduling strategies targeting scenarios with different burstiness levels, parameterized using the index of dispersion quantity. Extensive experiments have been performed using synthetic datasets and real-world data streams obtained from an existing real-time locating system. The experimental evaluation demonstrates the efficiency of our parallel solution and its effectiveness in handling the out-of-orderness degrees and burstiness levels of real-world applications

    Challenging the abstraction penalty in parallel patterns libraries

    Get PDF
    In the last years, pattern-based programming has been recognized as a good practice for efficiently exploiting parallel hardware resources. Following this approach, multiple libraries have been designed for providing such high-level abstractions to ease the parallel programming. However, those libraries do not share a common interface. To pave the way, GrPPI has been designed for providing an intermediate abstraction layer between application developers and existing parallel programming frameworks like OpenMP, Intel TBB or ISO C++ threads. On the other hand, FastFlow has been adopted as an efficient object-based programming framework that may benefit from being supported as an additional GrPPI backend. However, the object-based approach presents some major challenges to be incorporated under the GrPPI type safe functional programming style. In this paper, we present the integration of FastFlow as a new GrPPI backend to demonstrate that structured parallel programming frameworks perfectly fit the GrPPI design. Additionally, we also demonstrate that GrPPI does not incur in additional overheads for providing its abstraction layer, and we study the programmability in terms of lines of code and cyclomatic complexity. In general, the presented work acts as reciprocal validation of both FastFlow (as an efficient, native structured parallel programming framework) and GrPPI (as an efficient abstraction layer on top of existing parallel programming frameworks).This work has been partially supported by the European Commission EU H2020-ICT-2014-1 Project RePhrase (No. 644235) and by the Spanish Ministry of Economy and Competitiveness through TIN2016-79637-P “Towards Unification of HPC and Big Data Paradigms”