7,101 research outputs found
Treadmill exercise within lower body negative pressure protects leg lean tissue mass and extensor strength and endurance during bed rest.
Leg muscle mass and strength are decreased during reduced activity and non-weight-bearing conditions such as bed rest (BR) and spaceflight. Supine treadmill exercise within lower body negative pressure (LBNPEX) provides full-body weight loading during BR and may prevent muscle deconditioning. We hypothesized that a 40-min interval exercise protocol performed against LBNPEX 6 days week(-1) would attenuate losses in leg lean mass (LLM), strength, and endurance during 6° head-down tilt BR, with similar benefits for men and women. Fifteen pairs of healthy monozygous twins (8 male and 7 female pairs) completed 30 days of BR with one sibling of each twin pair assigned randomly as the non-exercise control (CON) and the other twin as the exercise subject (EX). Before and after BR, LLM and isokinetic leg strength and endurance were measured. Mean knee and ankle extensor and flexor strength and endurance and LLM decreased from pre- to post-BR in the male CON subjects (P < 0.01), but knee extensor strength and endurance, ankle extensor strength, and LLM were maintained in the male EX subjects. In contrast, no pre- to post-BR changes were significant in the female subjects, either CON or EX, likely due to their lower pre-BR values. Importantly, the LBNPEX countermeasure prevents or attenuates declines in LLM as well as extensor leg strength and endurance. Individuals who are stronger, have higher levels of muscular endurance, and/or have greater LLM are likely to experience greater losses during BR than those who are less fit
Detection of correlated galaxy ellipticities on CFHT data: first evidence for gravitational lensing by large-scale structures
We report the detection of a significant (5.5 sigma) excess of correlations
between galaxy ellipticities at scales ranging from 0.5 to 3.5 arc-minutes.
This detection of a gravitational lensing signal by large-scale structure was
made using a composite high quality imaging survey of 6300 arcmin^2 obtained at
the Canada France Hawaii Telescope (CFHT) with the UH8K and CFH12K panoramic
CCD cameras. The amplitude of the excess correlation is 2.2\pm 0.2 % at 1
arcmin scale, in agreement with theoretical predictions of the lensing effect
induced by large-scale structure.We provide a quantitative analysis of
systematics which could contribute to the signal and show that the net effect
is small and can be corrected for. We show that the measured ellipticity
correlations behave as expected for a gravitational shear signal. The
relatively small size of our survey precludes tight constraints on cosmological
models. However the data are in favor of cluster normalized cosmological
models, and marginally reject Cold Dark Matter models with (Omega=0.3,
sigma_8<0.6) or (Omega=1, sigma_8=1). The detection of cosmic shear
demonstrates the technical feasibility of using weak lensing surveys to measure
dark matter clustering and the potential for cosmological parameter
measurements, in particular with upcoming wide field CCD cameras.Comment: 19 pages. 19 Figures. Revised version accepted in A&
Debris Disks: Probing Planet Formation
Debris disks are the dust disks found around ~20% of nearby main sequence
stars in far-IR surveys. They can be considered as descendants of
protoplanetary disks or components of planetary systems, providing valuable
information on circumstellar disk evolution and the outcome of planet
formation. The debris disk population can be explained by the steady
collisional erosion of planetesimal belts; population models constrain where
(10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size)
typically form in protoplanetary disks. Gas is now seen long into the debris
disk phase. Some of this is secondary implying planetesimals have a Solar
System comet-like composition, but some systems may retain primordial gas.
Ongoing planet formation processes are invoked for some debris disks, such as
the continued growth of dwarf planets in an unstirred disk, or the growth of
terrestrial planets through giant impacts. Planets imprint structure on debris
disks in many ways; images of gaps, clumps, warps, eccentricities and other
disk asymmetries, are readily explained by planets at >>5au. Hot dust in the
region planets are commonly found (<5au) is seen for a growing number of stars.
This dust usually originates in an outer belt (e.g., from exocomets), although
an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of
Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018
Fast and reproducible in vivo T1 mapping of the human cervical spinal cord
PURPOSE: To develop a fast and robust method for measuring T1 in the whole cervical spinal cord in vivo, and to assess its reproducibility. METHODS: A spatially nonselective adiabatic inversion pulse is combined with zonally oblique-magnified multislice echo-planar imaging to produce a reduced field-of-view inversion-recovery echo-planar imaging protocol. Multi- inversion time data are obtained by cycling slice order throughout sequence repetitions. Measurement of T1 is performed using 12 inversion times for a total protocol duration of 7âmin. Reproducibility of regional T1 estimates is assessed in a scan-rescan experiment on five heathy subjects. RESULTS: Regional mean (standard deviation) T1 was: 1108.5 (±77.2) ms for left lateral column, 1110.1 (±83.2) ms for right lateral column, 1150.4 (±102.6) ms for dorsal column, and 1136.4 (±90.8) ms for gray matter. Regional T1 estimates showed good correlation between sessions (Pearson correlation coefficientâ=â0.89 (P valueâ<â0.01); mean differenceâ=â2 ms, 95% confidence intervalâ±â20 ms); and high reproducibility (intersession coefficient of variation approximately 1% in all the regions considered, intraclass correlation coefficientâ=â0.88 (P valueâ<â0.01, confidence interval 0.71-0.95)). CONCLUSIONS: T1 estimates in the cervical spinal cord are reproducible using inversion-recovery zonally oblique-magnified multislice echo-planar imaging. The short acquisition time and large coverage of this method paves the way for accurate T1 mapping for various spinal cord pathologies. Magn Reson Med, 2017. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited
Towards designing robust coupled networks
Natural and technological interdependent systems have been shown to be highly
vulnerable due to cascading failures and an abrupt collapse of global
connectivity under initial failure. Mitigating the risk by partial
disconnection endangers their functionality. Here we propose a systematic
strategy of selecting a minimum number of autonomous nodes that guarantee a
smooth transition in robustness. Our method which is based on betweenness is
tested on various examples including the famous 2003 electrical blackout of
Italy. We show that, with this strategy, the necessary number of autonomous
nodes can be reduced by a factor of five compared to a random choice. We also
find that the transition to abrupt collapse follows tricritical scaling
characterized by a set of exponents which is independent on the protection
strategy
Mobile Communication Signatures of Unemployment
The mapping of populations socio-economic well-being is highly constrained by
the logistics of censuses and surveys. Consequently, spatially detailed changes
across scales of days, weeks, or months, or even year to year, are difficult to
assess; thus the speed of which policies can be designed and evaluated is
limited. However, recent studies have shown the value of mobile phone data as
an enabling methodology for demographic modeling and measurement. In this work,
we investigate whether indicators extracted from mobile phone usage can reveal
information about the socio-economical status of microregions such as districts
(i.e., average spatial resolution < 2.7km). For this we examine anonymized
mobile phone metadata combined with beneficiaries records from unemployment
benefit program. We find that aggregated activity, social, and mobility
patterns strongly correlate with unemployment. Furthermore, we construct a
simple model to produce accurate reconstruction of district level unemployment
from their mobile communication patterns alone. Our results suggest that
reliable and cost-effective economical indicators could be built based on
passively collected and anonymized mobile phone data. With similar data being
collected every day by telecommunication services across the world,
survey-based methods of measuring community socioeconomic status could
potentially be augmented or replaced by such passive sensing methods in the
future
Visual memory profile in 22q11.2 microdeletion syndrome: are there differences in performance and neurobiological substrates between tasks linked to ventral and dorsal visual brain structures? A cross-sectional and longitudinal study
BACKGROUND: Children affected by the 22q11.2 deletion syndrome (22q11.2DS) have a specific neuropsychological profile with strengths and weaknesses in several cognitive domains. Specifically, previous evidence has shown that patients with 22q11.2DS have more difficulties memorizing faces and visual-object characteristics of stimuli. In contrast, they have better performance in visuo-spatial memory tasks. The first focus of this study was to replicate these results in a larger sample of patients affected with 22q11.2DS and using a range of memory tasks. Moreover, we analyzed if the deficits were related to brain morphology in the structures typically underlying these abilities (ventral and dorsal visual streams). Finally, since the longitudinal development of visual memory is not clearly characterized in 22q11.2DS, we investigated its evolution from childhood to adolescence.
METHODS: Seventy-one patients with 22q11.2DS and 49 control individuals aged between 9 and 16 years completed the Benton Visual Retention Test (BVRT) and specific subtests assessing visual memory from the Childrenâs Memory Scale (CMS). The BVRT was used to compute spatial and object memory errors. For the CMS, specific subtests were classified into ventral, dorsal, and mixed subtests. Longitudinal data were obtained from a subset of 26 patients and 22 control individuals.
RESULTS: Cross-sectional results showed that patients with 22q11.2DS were impaired in all visual memory measures, with stronger deficits in visual-object memory and memory of faces, compared to visuo-spatial memory. No correlations between morphological brain impairments and visual memory were found in patients with 22q11.2DS. Longitudinal findings revealed that participants with 22q11.2DS made more object memory errors than spatial memory errors at baseline. This difference was no longer significant at follow-up.
CONCLUSIONS: Individuals with 22q11.2DS have impairments in visual memory abilities, with more pronounced difficulties in memorizing faces and visual-object characteristics. From childhood to adolescence, the visual cognitive profile of patients with 22q11.2DS seems globally stable even though some processes show an evolution with time. We hope that our results will help clinicians and caregivers to better understand the memory difficulties of young individuals with 22q11.2DS. This has a particular importance at school to facilitate recommendations concerning intervention strategies for these young patients
The <i>Herschel</i> view of the massive star-forming region NGC 6334
Aims: Fundamental to any theory of high-mass star formation are gravity and turbulence. Their relative importance, which probably changes during cloud evolution, is not known. By investigating the spatial and density structure of the high-mass star-forming complex NGC 6334 we aim to disentangle the contributions of turbulence and gravity.
Methods: We used Herschel PACS and SPIRE imaging observations from the HOBYS key programme at wavelengths of 160, 250, 350, and 500 ÎŒm to construct dust temperature and column density maps. Using probability distribution functions (PDFs) of the column density determined for the whole complex and for four distinct sub-regions (distinguished on the basis of differences in the column density, temperature, and radiation field), we characterize the density structure of the complex. We investigate the spatial structure using the Î-variance, which probes the relative amount of structure on different size scales and traces possible energy injection mechanisms into the molecular cloud.
Results: The Î-variance analysis suggests that the significant scales of a few parsec that were found are caused by energy injection due to expanding HII regions, which are numerous, and by the lengths of filaments seen everywhere in the complex. The column density PDFs have a lognormal shape at low densities and a clearly defined power law at high densities for all sub-regions whose slope is linked to the exponent α of an equivalent spherical density distribution. In particular with α = 2.37, the central sub-region is largly dominated by gravity, caused by individual collapsing dense cores and global collapse of a larger region. The collapse is faster than free-fall (which would lead only to α = 2) and thus requires a more dynamic scenario (external compression, flows). The column density PDFs suggest that the different sub-regions are at different evolutionary stages, especially the central sub-region, which seems to be in a more evolved stage
- âŠ