277 research outputs found
Conformal Scalar Propagation on the Schwarzschild Black-Hole Geometry
The vacuum activity generated by the curvature of the Schwarzschild
black-hole geometry close to the event horizon is studied for the case of a
massless, conformal scalar field. The associated approximation to the unknown,
exact propagator in the Hartle-Hawking vacuum state for small values of the
radial coordinate above results in an analytic expression which
manifestly features its dependence on the background space-time geometry. This
approximation to the Hartle-Hawking scalar propagator on the Schwarzschild
black-hole geometry is, for that matter, distinct from all other. It is shown
that the stated approximation is valid for physical distances which range from
the event horizon to values which are orders of magnitude above the scale
within which quantum and backreaction effects are comparatively pronounced. An
expression is obtained for the renormalised in the
Hartle-Hawking vacuum state which reproduces the established results on the
event horizon and in that segment of the exterior geometry within which the
approximation is valid. In contrast to previous results the stated expression
has the superior feature of being entirely analytic. The effect of the
manifold's causal structure to scalar propagation is also studied.Comment: 34 pages, 2 figures. Published on line on October 16, 2009 and due to
appear in print in Gen.Rel.Gra
Three-dimensional flux states as a model for the pseudogap phase of transition metal oxides
We propose that the pseudogap state observed in the transition metal oxides
can be explained by a three-dimensional flux state, which exhibits
spontaneously generated currents in its ground state due to electron-electron
correlations. We compare the energy of the flux state to other classes of mean
field states, and find that it is stabilized over a wide range of and
. The signature of the state will be peaks in the neutron diffraction
spectra, the location and intensity of which are presented. The dependence of
the pseudogap in the optical conductivity is calculated based on the parameters
in the model.Comment: submitted to Phys. Rev. B on January 8, 200
Heavy Carriers and Non-Drude Optical Conductivity in MnSi
Optical properties of the weakly helimagnetic metal MnSi have been determined
in the photon energy range from 2 meV to 4.5 eV using the combination of
grazing incidence reflectance at 80 degrees (2 meV to 0.8 eV) and ellipsometry
(0.8 to 4.5 eV). As the sample is cooled below 100 K the effective mass becomes
strongly frequency dependent at low frequencies, while the scattering rate
developes a linear frequency dependence. The complex optical conductivity can
be described by the phenomenological relation \sigma(\omega,T) \propto
(\Gamma(T)+i\omega)^{-1/2} used for cuprates and ruthenates.Comment: 5 pages, ReVTeX 4, 5 figures in eps forma
Analytical approximation of the stress-energy tensor of a quantized scalar field in static spherically symmetric spacetimes
Analytical approximations for and of a
quantized scalar field in static spherically symmetric spacetimes are obtained.
The field is assumed to be both massive and massless, with an arbitrary
coupling to the scalar curvature, and in a zero temperature vacuum state.
The expressions for and are divided into
low- and high-frequency parts. The contributions of the high-frequency modes to
these quantities are calculated for an arbitrary quantum state. As an example,
the low-frequency contributions to and are
calculated in asymptotically flat spacetimes in a quantum state corresponding
to the Minkowski vacuum (Boulware quantum state). The limits of the
applicability of these approximations are discussed.Comment: revtex4, 17 pages; v2: three references adde
Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime
A method for computing the stress-energy tensor for the quantized, massless,
spin 1/2 field in a general static spherically symmetric spacetime is
presented. The field can be in a zero temperature state or a non-zero
temperature thermal state. An expression for the full renormalized
stress-energy tensor is derived. It consists of a sum of two tensors both of
which are conserved. One tensor is written in terms of the modes of the
quantized field and has zero trace. In most cases it must be computed
numerically. The other tensor does not explicitly depend on the modes and has a
trace equal to the trace anomaly. It can be used as an analytic approximation
for the stress-energy tensor and is equivalent to other approximations that
have been made for the stress-energy tensor of the massless spin 1/2 field in
static spherically symmetric spacetimes.Comment: 34 pages, no figure
Solar flare prediction using advanced feature extraction, machine learning and feature selection
YesNovel machine-learning and feature-selection algorithms have been developed to study: (i)
the flare prediction capability of magnetic feature (MF) properties generated by the recently developed
Solar Monitor Active Region Tracker (SMART); (ii) SMART's MF properties that are most significantly
related to flare occurrence. Spatio-temporal association algorithms are developed to associate MFs
with flares from April 1996 to December 2010 in order to differentiate flaring and non-flaring MFs and
enable the application of machine learning and feature selection algorithms. A machine-learning
algorithm is applied to the associated datasets to determine the flare prediction capability of all 21
SMART MF properties. The prediction performance is assessed using standard forecast verification
measures and compared with the prediction measures of one of the industry's standard technologies
for flare prediction that is also based on machine learning - Automated Solar Activity Prediction (ASAP).
The comparison shows that the combination of SMART MFs with machine learning has the potential to
achieve more accurate flare prediction than ASAP. Feature selection algorithms are then applied to
determine the MF properties that are most related to flare occurrence. It is found that a reduced set of
6 MF properties can achieve a similar degree of prediction accuracy as the full set of 21 SMART MF
properties
A high-precision rf trap with minimized micromotion for an In+ multiple-ion clock
We present an experiment to characterize our new linear ion trap designed for
the operation of a many-ion optical clock using 115-In^+ as clock ions. For the
characterization of the trap as well as the sympathetic cooling of the clock
ions we use 172-Yb^+. The trap design has been derived from finite element
method (FEM) calculations and a first prototype based on glass-reinforced
thermoset laminates was built. This paper details on the trap manufacturing
process and micromotion measurement. Excess micromotion is measured using
photon-correlation spectroscopy with a resolution of 1.1nm in motional
amplitude, and residual axial rf fields in this trap are compared to FEM
calculations. With this method, we demonstrate a sensitivity to systematic
clock shifts due to excess micromotion of |({\Delta}{\nu}/{\nu})| = 8.5x10^-20.
Based on the measurement of axial rf fields of our trap, we estimate a number
of twelve ions that can be stored per trapping segment and used as an optical
frequency standard with a fractional inaccuracy of \leq 1x10^-18 due to
micromotion.Comment: 19 pages with 14 picture
Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector
This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be:
σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb,
where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented