89 research outputs found

    Porto Oscillation Code (POSC)

    Full text link
    The Porto Oscillation Code (POSC) has been developed in 1995 and improved over the years, with the main goal of calculating linear adiabatic oscillations for models of solar-type stars. It has also been used to estimate the frequencies and eigenfunctions of stars from the pre-main sequence up to the sub-giant phase, having a mass between 0.8 and 4 solar masses. The code solves the linearised perturbation equations of adiabatic pulsations for an equilibrium model using a second order numerical integration method. The possibility of using Richardson extrapolation is implemented. Several options for the surface boundary condition can be used. In this work we briefly review the key ingredients of the calculations, namely the equations, the numerical scheme and the output.Comment: Accepted for publication in Astrophysics and Space Science

    Seismic analysis of the second ionization region of helium in the Sun - I. Sensitivity study and methodology

    Get PDF
    The region of the second ionization of helium in the Sun is a narrow layer near the surface. Ionization induces a local change in the adiabatic exponent Γ1, which produces a characteristic signature in the frequencies of p modes. By adapting the method developed by Monteiro, Christensen-Dalsgaard & Thompson, we propose a methodology for determining the properties of this region by studying such a signature in the frequencies of oscillation. Using solar data we illustrate how the signal from the helium ionization zone can be isolated. Using solar models which each use different physics — the theory of convection, equation of state and low-temperature opacities — we establish how the characteristics of the signal depend on the various physical processes contributing to the structure in the ionization layer. We further discuss how the method can be used to measure the solar helium abundance in the envelope and to constrain the physics affecting this region of the Sun. The potential usefulness of the method we propose is shown. It may complement other inversion methods developed to study the solar structure and to determine the envelope helium abundance

    On the oscillation spectrum of a magnetized core in a giant star

    Full text link
    The spectrum of gravito-acoustic modes is depleted in dipolar modes for a significant fraction of the giant stars observed by the Kepler mission, a feature that has been explained by the presence of magnetic fields in the core of these stars (Fuller et al. 2015, Cantiello et al. 2016). We further investigate this possible scenario by considering first the oscillation spectrum of the core of a giant star modeled by a stably stratified, self-gravitating fluid of uniform density in a sphere pervaded by a uniform magnetic field. Our results show that the first effect of a magnetic field on the g-modes is to reduce their wavenumber and therefore reduce their damping. The magnetic effect, on this model, is therefore opposite Fuller’s et al scenario. Moreover, the model shows that it is not possible to change the damping rate without changing the frequency of the modes and this latter change is not observed. Because of the simplicity of our model, the magnetized core scenario cannot be dismissed but further investigations are needed, and other ways of explaining the presence of depressed modes should also be considered

    Preface

    Full text link
    This volume is a collection of original articles resulting from the contributions presented at the international conference

    RR Lyrae Stars in M4

    Full text link
    Observations by Kepler/K2 have revolutionized the study of RR Lyrae stars by allowing the detection of new phenomna, such as low amplitude additional modes and period doubling, which had not previously been seen from the ground. During campaign 2, K2 observed the globular cluster M4, providiing the first opportunity to study a sizeable group of RR Lyrae stars that belong to a single population; the other RR Lyrae stars that have been observed from space are field stars in the galactic halo and thus belong to an assortment of populations. In this poster we present the results of our study of the RR Lyrae variables in M4 from K2 photometry. We have identified additional, low amplitude pulsation modes in both observed RRc stars. In 3 RRab stars we have found the Blazhko effect with periods of 16.6d, 22.4d, and 44.5d

    An opaque Sun? The potential for future, higher opacities to solve the solar abundance problem

    Full text link
    Last year Bailey et al. announced their measurement of iron opacity that increases the Rosseland mean at the base of the solar convection zone by 7%. I ask what happens if the absorption by other elements is also stronger than predicted so far. Artificially increasing the absorption by other elements, proportional to the number of bound electrons in the absorber (reflecting our remaining ignorance of atomic physics) gives an opacity increase for a solar model, that has the potential to solve the long-standing solar abundance problem. Conclusion: Opacities are the likely source of the solar abundance problem, and the solar abundances are likely closer to those of Asplund et al. (2009) than to the various classic sets of abundances

    Inter-comparison of the g-, f- and p-modes calculated using different oscillation codes for a given stellar model

    Full text link
    In order to make astroseismology a powerful tool to explore stellar interiors, different numerical codes should give the same oscillation frequencies for the same input physics. This work is devoted to test, compare and, if needed, optimize the seismic codes used to calculate the eigenfrequencies to be finally compared with observations. The oscillation codes of nine research groups in the field have been used in this study. The same physics has been imposed for all the codes in order to isolate the non-physical dependence of any possible difference. Two equilibrium models with different grids, 2172 and 4042 mesh points, have been used, and the latter model includes an explicit modelling of semiconvection just outside the convective core. Comparing the results for these two models illustrates the effect of the number of mesh points and their distribution in particularly critical parts of the model, such as the steep composition gradient outside the convective core. A comprehensive study of the frequency differences found for the different codes is given as well. These differences are mainly due to the use of different numerical integration schemes. The use of a second-order integration scheme plus a Richardson extrapolation provides similar results to a fourth-order integration scheme. The proper numerical description of the Brunt-Vaisala frequency in the equilibrium model is also critical for some modes. An unexpected result of this study is the high sensitivity of the frequency differences to the inconsistent use of values of the gravitational constant (G) in the oscillation codes, within the range of the experimentally determined ones, which differ from the value used to compute the equilibrium model.Comment: 18 pages, 34 figure
    • …
    corecore