721 research outputs found
Adhesion-independent synergy of monocytes and endothelial cells in cytokine production: regulation of IL-6 and GM–CSF production by PAF
Co-Cultures of monocytes (MO) and endothelial cells (EC) were studied for their capacity to synergize in the production of interleukin-6 (IL-6) and granulocyte-macrophage colony-stimulating factor (GM–CSF), two cytokines potentially important in vascular physiopathology. Resting monocytes produced detectable amounts of IL-6 but no GM–CSF, whereas confluent EC produced significant quantities of GM–CSF, but minimal IL-6. In co-cultures without stimuli, additive synthesis of both cytokines was observed. When EC were pretreated, however, with either PAF, TNF or both stimuli, before addition of MO, synergistic production of IL-6 was observed. In contrast, GM–CSF production was not enhanced by coculture of monocytes with activated EC. When either cell population was fixed with paraformaldehyde or killed by freeze-thawing before addition to the co-culture, cytokine levels reverted to those produced by the unaffected population alone. On the other hand, separating the two cell populations by a cell-impermeable membrane in transwell cultures did not affect the synergistic production of the cytokines. Taken together, our data suggest that EC and MO can synergize in response to stimuli by producing IL-6 and that this synergy is dependent on the integrity of both cell populations, but independent of cell-cell contact
Deformation of Small Compressed Droplets
We investigate the elastic properties of small droplets under compression.
The compression of a bubble by two parallel plates is solved exactly and it is
shown that a lowest-order expansion of the solution reduces to a form similar
to that obtained by Morse and Witten. Other systems are studied numerically and
results for configurations involving between 2 and 20 compressing planes are
presented. It is found that the response to compression depends on the number
of planes. The shear modulus is also calculated for common lattices and the
stability crossover between f.c.c.\ and b.c.c.\ is discussed.Comment: RevTeX with psfig-included figures and a galley macr
Infrared Imaging of Capella with the IOTA Closure Phase Interferometer
We present infrared aperture synthesis maps produced with the upgraded IOTA
interferometer. Michelson interferograms on the close binary system Capella
(Alpha Aur) were obtained in the H-band between 2002 November 12 and 16 using
the IONIC3 beam combiner. With baselines of 15m < B < 38m, we were able to
determine the relative position of the binary components with milliarcsecond
(mas) precision and to track their movement along the approx. 14 degree arc
covered by our observation run. We briefly describe the algorithms used for
visibility and closure phase estimation. Three different Hybrid Mapping and
Bispectrum Fitting techniques were implemented within one software framework
and used to reconstruct the source brightness distribution. By dividing our
data into subsets, the system could be mapped at three epochs, revealing the
motion of the stars. The precise position of the binary components was also
determined with model fits, which in addition revealed I_Aa/I_Ab=1.49 +/- 0.10
and apparent stellar uniform-disk (UD) diameters of Theta_Aa=8.9 +/- 0.6 mas
and Theta_Ab=5.8 +/- 0.8 mas.
To improve the u, v-plane coverage, we compensated this orbital motion by
applying a rotation-compensating coordinate transformation. The resulting
model-independent map with a beam size of 5.4 x 2.6 mas allows the resolution
of the stellar surfaces of the Capella giants themselves.Comment: Accepted by the Astronomical Journal (2005-03-21
Numerical observation of non-axisymmetric vesicles in fluid membranes
By means of Surface Evolver (Exp. Math,1,141 1992), a software package of
brute-force energy minimization over a triangulated surface developed by the
geometry center of University of Minnesota, we have numerically searched the
non-axisymmetric shapes under the Helfrich spontaneous curvature (SC) energy
model. We show for the first time there are abundant mechanically stable
non-axisymmetric vesicles in SC model, including regular ones with intrinsic
geometric symmetry and complex irregular ones. We report in this paper several
interesting shapes including a corniculate shape with six corns, a
quadri-concave shape, a shape resembling sickle cells, and a shape resembling
acanthocytes. As far as we know, these shapes have not been theoretically
obtained by any curvature model before. In addition, the role of the
spontaneous curvature in the formation of irregular crenated vesicles has been
studied. The results shows a positive spontaneous curvature may be a necessary
condition to keep an irregular crenated shape being mechanically stable.Comment: RevTex, 14 pages. A hard copy of 8 figures is available on reques
Stress-free Spatial Anisotropy in Phase-Ordering
We find spatial anisotropy in the asymptotic correlations of two-dimensional
Ising models under non-equilibrium phase-ordering. Anisotropy is seen for
critical and off-critical quenches and both conserved and non-conserved
dynamics. We argue that spatial anisotropy is generic for scalar systems
(including Potts models) with an anisotropic surface tension. Correlation
functions will not be universal in these systems since anisotropy will depend
on, e.g., temperature, microscopic interactions and dynamics, disorder, and
frustration.Comment: 4 pages, 4 figures include
Packing of Compressible Granular Materials
3D Computer simulations and experiments are employed to study random packings
of compressible spherical grains under external confining stress. Of particular
interest is the rigid ball limit, which we describe as a continuous transition
in which the applied stress vanishes as (\phi-\phi_c)^\beta, where \phi is the
(solid phase) volume density. This transition coincides with the onset of shear
rigidity. The value of \phi_c depends, for example, on whether the grains
interact via only normal forces (giving rise to random close packings) or by a
combination of normal and friction generated transverse forces (producing
random loose packings). In both cases, near the transition, the system's
response is controlled by localized force chains. As the stress increases, we
characterize the system's evolution in terms of (1) the participation number,
(2) the average force distribution, and (3) visualization techniques.Comment: 4 pages, 7 figures, to appear in Phys. Rev. Let
A Model for the Elasticity of Compressed Emulsions
We present a new model to describe the unusual elastic properties of
compressed emulsions. The response of a single droplet under compression is
investigated numerically for different Wigner-Seitz cells. The response is
softer than harmonic, and depends on the coordination number of the droplet.
Using these results, we propose a new effective inter-droplet potential which
is used to determine the elastic response of a monodisperse collection of
disordered droplets as a function of volume fraction. Our results are in
excellent agreement with recent experiments. This suggests that anharmonicity,
together with disorder, are responsible for the quasi-linear increase of
and observed at .Comment: RevTeX with psfig-included figures and a galley macr
Dynamical Scaling from Multi-Scale Measurements
We present a new measure of the Dynamical Critical behavior: the "Multi-scale
Dynamical Exponent (MDE)"Comment: 9 pages,Latex, Request figures from [email protected]
Carbon flux from decomposing wood and its dependency on temperature, wood N2 fixation rate, moisture and fungal composition in a Norway spruce forest
201
Why Effective Medium Theory Fails in Granular Materials
Experimentally it is known that the bulk modulus, K, and shear modulus, \mu,
of a granular assembly of elastic spheres increase with pressure, p, faster
than the p^1/3 law predicted by effective medium theory (EMT) based on
Hertz-Mindlin contact forces. To understand the origin of these discrepancies,
we perform numerical simulations of granular aggregates under compression. We
show that EMT can describe the moduli pressure dependence if one includes the
increasing number of grain-grain contacts with p. Most important, the affine
assumption (which underlies EMT), is found to be valid for K(p) but breakdown
seriously for \mu(p). This explains why the experimental and numerical values
of \mu(p) are much smaller than the EMT predictions.Comment: 4 pages, 5 figures, http://polymer.bu.edu/~hmaks
- …