3,270 research outputs found
Encoding a Qubit into a Cavity Mode in Circuit-QED using Phase Estimation
Gottesman, Kitaev and Preskill have formulated a way of encoding a qubit into
an oscillator such that the qubit is protected against small shifts
(translations) in phase space. The idea underlying this encoding is that error
processes of low rate can be expanded into small shift errors. The qubit space
is defined as an eigenspace of two mutually commuting displacement operators
and which act as large shifts/translations in phase space. We
propose and analyze the approximate creation of these qubit states by coupling
the oscillator to a sequence of ancilla qubits. This preparation of the states
uses the idea of phase estimation where the phase of the displacement operator,
say , is approximately determined. We consider several possible forms of
phase estimation. We analyze the performance of repeated and adapative phase
estimation as the simplest and experimentally most viable schemes given a
realistic upper-limit on the number of photons in the oscillator. We propose a
detailed physical implementation of this protocol using the dispersive coupling
between a transmon ancilla qubit and a cavity mode in circuit-QED. We provide
an estimate that in a current experimental set-up one can prepare a good code
state from a squeezed vacuum state using rounds of adapative phase
estimation, lasting in total about sec., with (heralded) chance
of success.Comment: 24 pages, 15 figures. Some minor improvements to text and figures.
Some of the numerical data has been replaced by more accurate simulations.
The improved simulation shows that the code performs better than originally
anticipate
Evolution of microgastropods (Ellobioidea, Carychiidae): integrating taxonomic, phylogenetic and evolutionary hypotheses
BACKGROUND: Current biodiversity patterns are considered largely the result of past climatic and tectonic changes. In an integrative approach, we combine taxonomic and phylogenetic hypotheses to analyze temporal and geographic diversification of epigean (Carychium) and subterranean (Zospeum) evolutionary lineages in Carychiidae (Eupulmonata, Ellobioidea). We explicitly test three hypotheses: 1) morphospecies encompass unrecognized evolutionary lineages, 2) limited dispersal results in a close genetic relationship of geographical proximally distributed taxa and 3) major climatic and tectonic events had an impact on lineage diversification within Carychiidae.
RESULTS: Initial morphospecies assignments were investigated by different molecular delimitation approaches (threshold, ABGD, GMYC and SP). Despite a conservative delimitation strategy, carychiid morphospecies comprise a great number of unrecognized evolutionary lineages. We attribute this phenomenon to historic underestimation of morphological stasis and phenotypic variability amongst lineages. The first molecular phylogenetic hypothesis for the Carychiidae (based on COI, 16S and H3) reveals Carychium and Zospeum to be reciprocally monophyletic. Geographical proximally distributed lineages are often closely related. The temporal diversification of Carychiidae is best described by a constant rate model of diversification. The evolution of Carychiidae is characterized by relatively few (long distance) colonization events. We find support for an Asian origin of Carychium. Zospeum may have arrived in Europe before extant members of Carychium. Distantly related Carychium clades inhabit a wide spectrum of the available bioclimatic niche and demonstrate considerable niche overlap.
CONCLUSIONS: Carychiid taxonomy is in dire need of revision. An inferred wide distribution and variable phenotype suggest underestimated diversity in Zospeum. Several Carychium morphospecies are results of past taxonomic lumping. By collecting populations at their type locality, molecular investigations are able to link historic morphospecies assignments to their respective evolutionary lineage. We propose that rare founder populations initially colonized a continent or cave system. Subsequent passive dispersal into adjacent areas led to in situ pan-continental or mountain range diversifications. Major environmental changes did not influence carychiid diversification. However, certain molecular delimitation methods indicated a recent decrease in diversification rate. We attribute this decrease to protracted speciation
Inline self-diffraction dispersion-scan of over octave-spanning pulses in the single-cycle regime
We present an implementation of dispersion-scan based on self-diffraction (SD
d-scan) and apply it to the measurement of over octave-spanning sub-4-fs
pulses. The results are compared with second-harmonic generation (SHG) d-scan.
The efficiency of the SD process is derived theoretically and compared with the
spectral response retrieved by the d-scan algorithm. The new SD d-scan has a
robust inline setup and enables measuring pulses with over-octave spectra,
single-cycle durations and wavelength ranges beyond those of SHG crystals, such
as the ultraviolet and the deep-ultraviolet.Comment: 8 pages, 5 figure
Distributed interoperable workflow support for electronic commerce.
Abstract. This paper describes a flexible distributed transactional workflow environment based on an extensible object-oriented framework built around class libraries, application programming interfaces, and shared services. The purpose of this environment is to support a range of EC-like business activities including the support of financial transactions and electronic contracts. This environment has as its aim to provide key infrastructure services for mediating and monitoring electronic commerce.
Hierarchies from D-brane instantons in globally defined Calabi-Yau Orientifolds
We construct the first globally consistent semi-realistic Type I string vacua
on an elliptically fibered manifold where the zero modes of the Euclidean
D1-instanton sector allow for the generation of non-perturbative Majorana
masses of an intermediate scale. In another class of global models, a D1-brane
instanton can generate a Polonyi-type superpotential breaking supersymmetry at
an exponentially suppressed scale.Comment: 4 pages, 4 tables, uses revtex; v2: Discussion of instanton curves
improved, typos fixed, references added; v3: version published in PR
Cascaded Nondegenerate Four-Wave Mixing Technique for High-Power Single-Cycle Pulse Synthesis in the Visible and Ultraviolet Ranges
We present a new technique to synthesize high-power single-cycle pulses in
the visible and ultraviolet ranges by coherent superposition of a multiband
octave-spanning spectrum obtained by highly-nondegenerate cascaded four-wave
mixing of femtosecond pulses in bulk isotropic nonresonant media. The
generation of coherent spectra spanning over two octaves in bandwidth is
experimentally demonstrated using a thin fused silica slide. Full
characterization of the intervening multicolored fields using
frequency-resolved optical gating, where multiple cascaded orders have been
measured simultaneously for the first time, supports the possibility of direct
synthesis of near-single-cycle 2.2 fs visible-UV pulses without recurring to
complex amplitude or phase control, which should enable many applications in
science and technology.Comment: 13 pages, 4 figures. Submitted to Physical Review
Turbulent vortex ring/free surface interaction
The interaction of turbulent vortex rings that approach a clean water surface under various angles is experimentally investigated. The temporal evolution of the vortex rings with an initial Reynolds number of Re_0 = 7500 is characterized by the laminar/turbulent transition and asymptotic relaminarization of the flow. Using the shadowgraph technique, two major flow cases were identified as a result of the vortex-ring/free-surface interaction: a trifurcation case that results from the interaction during the transition stage, and a bifurcation case that evolves during the fully-developed turbulent stage. In contrast to the laminar interaction, the turbulent bifurcation pattern is characterized by the reconnection and mutual interaction of many small-scale structures. Simultaneous digital particle image velocimetry (DPIV) and shadowgraph measurements reveal that the evolution of the small-scale structures at the free surface is strongly dominated by the bifurcation pattern, which in turn is a consequence of the persisting laminar sublayer in the core regions of the reconnected turbulent vortex loops
Scanning-electron-microscopy observations and mechanical characteristics of ion-beam-sputtered surgical implant alloys
An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing
- âŠ