193 research outputs found
Force-matched embedded-atom method potential for niobium
Large-scale simulations of plastic deformation and phase transformations in
alloys require reliable classical interatomic potentials. We construct an
embedded-atom method potential for niobium as the first step in alloy potential
development. Optimization of the potential parameters to a well-converged set
of density-functional theory (DFT) forces, energies, and stresses produces a
reliable and transferable potential for molecular dynamics simulations. The
potential accurately describes properties related to the fitting data, and also
produces excellent results for quantities outside the fitting range. Structural
and elastic properties, defect energetics, and thermal behavior compare well
with DFT results and experimental data, e.g., DFT surface energies are
reproduced with less than 4% error, generalized stacking-fault energies differ
from DFT values by less than 15%, and the melting temperature is within 2% of
the experimental value.Comment: 17 pages, 13 figures, 7 table
Comparison between classical potentials and ab initio for silicon under large shear
The homogeneous shear of the {111} planes along the direction of bulk
silicon has been investigated using ab initio techniques, to better understand
the strain properties of both shuffle and glide set planes. Similar
calculations have been done with three empirical potentials, Stillinger-Weber,
Tersoff and EDIP, in order to find the one giving the best results under large
shear strains. The generalized stacking fault energies have also been
calculated with these potentials to complement this study. It turns out that
the Stillinger-Weber potential better reproduces the ab initio results, for the
smoothness and the amplitude of the energy variation as well as the
localization of shear in the shuffle set
Academic Needs and Family Factors in the Education of Southeast Asian American Students: Dismantling the Model Minority Myth
The model minority myth is a powerful force in schools. Many teachers believe that Asian American students do not need academic interventions. The purpose of this study was to examine the student achievement of almost a million seventh-grade students from California. The research compared the performance of Southeast Asian Americans, Cambodian, Laotian, and Vietnamese students, on reading and math on the CAT/6 standardized assessment with African American and White American students. Cambodian American and Laotian American students performed significantly lower than their White American peers and compared similarly to their African American peers. Vietnamese American students also scored lower than their White American counterparts on reading. In addition, the study examined the influence of parent education levels, free/reduced lunch status, and ethnicity on academic achievement. A huge achievement gap continues to plague many Southeast Asian American students
Lattice Resistance and Peierls Stress in Finite-size Atomistic Dislocation Simulations
Atomistic computations of the Peierls stress in fcc metals are relatively
scarce. By way of contrast, there are many more atomistic computations for bcc
metals, as well as mixed discrete-continuum computations of the Peierls-Nabarro
type for fcc metals. One of the reasons for this is the low Peierls stresses in
fcc metals. Because atomistic computations of the Peierls stress take place in
finite simulation cells, image forces caused by boundaries must either be
relaxed or corrected for if system size independent results are to be obtained.
One of the approaches that has been developed for treating such boundary forces
is by computing them directly and subsequently subtracting their effects, as
developed by V. B. Shenoy and R. Phillips [Phil. Mag. A, 76 (1997) 367]. That
work was primarily analytic, and limited to screw dislocations and special
symmetric geometries. We extend that work to edge and mixed dislocations, and
to arbitrary two-dimensional geometries, through a numerical finite element
computation. We also describe a method for estimating the boundary forces
directly on the basis of atomistic calculations. We apply these methods to the
numerical measurement of the Peierls stress and lattice resistance curves for a
model aluminum (fcc) system using an embedded-atom potential.Comment: LaTeX 47 pages including 20 figure
Assessment of interatomic potentials for atomistic analysis of static and dynamic properties of screw dislocations in W
Screw dislocations in bcc metals display non-planar cores at zero temperature
which result in high lattice friction and thermally activated strain rate
behavior. In bcc W, electronic structure molecular statics calculations reveal
a compact, non-degenerate core with an associated Peierls stress between 1.7
and 2.8 GPa. However, a full picture of the dynamic behavior of dislocations
can only be gained by using more efficient atomistic simulations based on
semiempirical interatomic potentials. In this paper we assess the suitability
of five different potentials in terms of static properties relevant to screw
dislocations in pure W. As well, we perform molecular dynamics simulations of
stress-assisted glide using all five potentials to study the dynamic behavior
of screw dislocations under shear stress. Dislocations are seen to display
thermally-activated motion in most of the applied stress range, with a gradual
transition to a viscous damping regime at high stresses. We find that one
potential predicts a core transformation from compact to dissociated at finite
temperature that affects the energetics of kink-pair production and impacts the
mechanism of motion. We conclude that a modified embedded-atom potential
achieves the best compromise in terms of static and dynamic screw dislocation
properties, although at an expense of about ten-fold compared to central
potentials
Hydrogen-enhanced local plasticity in aluminum: an ab initio study
Dislocation core properties of Al with and without H impurities are studied
using the Peierls-Nabarro model with parameters determined by ab initio
calculations. We find that H not only facilitates dislocation emission from the
crack tip but also enhances dislocation mobility dramatically, leading to
macroscopically softening and thinning of the material ahead of the crack tip.
We observe strong binding between H and dislocation cores, with the binding
energy depending on dislocation character. This dependence can directly affect
the mechanical properties of Al by inhibiting dislocation cross-slip and
developing slip planarity.Comment: 4 pages, 3 figure
Ab Initio Study of Screw Dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals
We report the first ab initio density-functional study of screw
dislocations cores in the bcc transition metals Mo and Ta. Our results suggest
a new picture of bcc plasticity with symmetric and compact dislocation cores,
contrary to the presently accepted picture based on continuum and interatomic
potentials. Core energy scales in this new picture are in much better agreement
with the Peierls energy barriers to dislocation motion suggested by
experiments.Comment: 3 figures, 3 table
Temperature effects on dislocation core energies in silicon and germanium
Temperature effects on the energetics of the 90-degree partial dislocation in
silicon and germanium are investigated, using non-equilibrium methods to
estimate free energies, coupled with Monte Carlo simulations. Atomic
interactions are described by Tersoff and EDIP interatomic potentials. Our
results indicate that the vibrational entropy has the effect of increasing the
difference in free energy between the two possible reconstructions of the
90-degree partial, namely, the single-period and the double-period geometries.
This effect further increases the energetic stability of the double-period
reconstruction at high temperatures. The results also indicate that anharmonic
effects may play an important role in determining the structural properties of
these defects in the high-temperature regime.Comment: 8 pages in two-column physical-review format with six figure
Mesoscopic Analysis of Structure and Strength of Dislocation Junctions in FCC Metals
We develop a finite element based dislocation dynamics model to simulate the
structure and strength of dislocation junctions in FCC crystals. The model is
based on anisotropic elasticity theory supplemented by the explicit inclusion
of the separation of perfect dislocations into partial dislocations bounding a
stacking fault. We demonstrate that the model reproduces in precise detail the
structure of the Lomer-Cottrell lock already obtained from atomistic
simulations. In light of this success, we also examine the strength of
junctions culminating in a stress-strength diagram which is the locus of points
in stress space corresponding to dissolution of the junction.Comment: 9 Pages + 4 Figure
Ab initio and finite-temperature molecular dynamics studies of lattice resistance in tantalum
This manuscript explores the apparent discrepancy between experimental data
and theoretical calculations of the lattice resistance of bcc tantalum. We
present the first results for the temperature dependence of the Peierls stress
in this system and the first ab initio calculation of the zero-temperature
Peierls stress to employ periodic boundary conditions, which are those best
suited to the study of metallic systems at the electron-structure level. Our ab
initio value for the Peierls stress is over five times larger than current
extrapolations of experimental lattice resistance to zero-temperature. Although
we do find that the common techniques for such extrapolation indeed tend to
underestimate the zero-temperature limit, the amount of the underestimation
which we observe is only 10-20%, leaving open the possibility that mechanisms
other than the simple Peierls stress are important in controlling the process
of low temperature slip.Comment: 12 pages and 9 figure
- …