10,375 research outputs found
Quantum Reality and Measurement: A Quantum Logical Approach
The recently established universal uncertainty principle revealed that two
nowhere commuting observables can be measured simultaneously in some state,
whereas they have no joint probability distribution in any state. Thus, one
measuring apparatus can simultaneously measure two observables that have no
simultaneous reality. In order to reconcile this discrepancy, an approach based
on quantum logic is proposed to establish the relation between quantum reality
and measurement. We provide a language speaking of values of observables
independent of measurement based on quantum logic and we construct in this
language the state-dependent notions of joint determinateness, value identity,
and simultaneous measurability. This naturally provides a contextual
interpretation, in which we can safely claim such a statement that one
measuring apparatus measures one observable in one context and simultaneously
it measures another nowhere commuting observable in another incompatible
context.Comment: 16 pages, Latex. Presented at the Conference "Quantum Theory:
Reconsideration of Foundations, 5 (QTRF5)," Vaxjo, Sweden, 15 June 2009. To
appear in Foundations of Physics
Universal Uncertainty Principle in the Measurement Operator Formalism
Heisenberg's uncertainty principle has been understood to set a limitation on
measurements; however, the long-standing mathematical formulation established
by Heisenberg, Kennard, and Robertson does not allow such an interpretation.
Recently, a new relation was found to give a universally valid relation between
noise and disturbance in general quantum measurements, and it has become clear
that the new relation plays a role of the first principle to derive various
quantum limits on measurement and information processing in a unified
treatment. This paper examines the above development on the noise-disturbance
uncertainty principle in the model-independent approach based on the
measurement operator formalism, which is widely accepted to describe a class of
generalized measurements in the field of quantum information. We obtain
explicit formulas for the noise and disturbance of measurements given by the
measurement operators, and show that projective measurements do not satisfy the
Heisenberg-type noise-disturbance relation that is typical in the gamma-ray
microscope thought experiments. We also show that the disturbance on a Pauli
operator of a projective measurement of another Pauli operator constantly
equals the square root of 2, and examine how this measurement violates the
Heisenberg-type relation but satisfies the new noise-disturbance relation.Comment: 11 pages. Based on the author's invited talk at the 9th International
Conference on Squeezed States and Uncertainty Relations (ICSSUR'2005),
Besancon, France, May 2-6, 200
Conservation laws, uncertainty relations, and quantum limits of measurements
The uncertainty relation between the noise operator and the conserved
quantity leads to a bound for the accuracy of general measurements. The bound
extends the assertion by Wigner, Araki, and Yanase that conservation laws limit
the accuracy of ``repeatable'', or ``nondisturbing'', measurements to general
measurements, and improves the one previously obtained by Yanase for spin
measurements. The bound also sets an obstacle to making a small quantum
computer.Comment: 4 pages, RevTex, to appear in PR
The modern tools of quantum mechanics (A tutorial on quantum states, measurements, and operations)
This tutorial is devoted to review the modern tools of quantum mechanics,
which are suitable to describe states, measurements, and operations of
realistic, not isolated, systems in interaction with their environment, and
with any kind of measuring and processing devices. We underline the central
role of the Born rule and and illustrate how the notion of density operator
naturally emerges, together the concept of purification of a mixed state. In
reexamining the postulates of standard quantum measurement theory, we
investigate how they may formally generalized, going beyond the description in
terms of selfadjoint operators and projective measurements, and how this leads
to the introduction of generalized measurements, probability operator-valued
measures (POVM) and detection operators. We then state and prove the Naimark
theorem, which elucidates the connections between generalized and standard
measurements and illustrates how a generalized measurement may be physically
implemented. The "impossibility" of a joint measurement of two non commuting
observables is revisited and its canonical implementations as a generalized
measurement is described in some details. Finally, we address the basic
properties, usually captured by the request of unitarity, that a map
transforming quantum states into quantum states should satisfy to be physically
admissible, and introduce the notion of complete positivity (CP). We then state
and prove the Stinespring/Kraus-Choi-Sudarshan dilation theorem and elucidate
the connections between the CP-maps description of quantum operations, together
with their operator-sum representation, and the customary unitary description
of quantum evolution. We also address transposition as an example of positive
map which is not completely positive, and provide some examples of generalized
measurements and quantum operations.Comment: Tutorial. 26 pages, 1 figure. Published in a special issue of EPJ -
ST devoted to the memory of Federico Casagrand
Momentum-space Harper-Hofstadter model
We show how the weakly trapped Harper-Hofstadter model can be mapped onto a
Harper-Hofstadter model in momentum space. In this momentum-space model, the
band dispersion plays the role of the periodic potential, the Berry curvature
plays the role of an effective magnetic field, the real-space harmonic trap
provides the momentum-space kinetic energy responsible for the hopping, and the
trap position sets the boundary conditions around the magnetic Brillouin zone.
Spatially local interactions translate into nonlocal interactions in momentum
space: within a mean-field approximation, we show that increasing interparticle
interactions leads to a structural change of the ground state, from a single
rotationally symmetric ground state to degenerate ground states that
spontaneously break rotational symmetry.Comment: 10 pages, 7 figure
Recommended from our members
Trust and Norwegian-Russian Energy Relations
Trust in Norwegian-Russian energy relations is one in the making. Both sides have actively pursued to build trust, particularly over the past decade. The process has been driven by shared economic interests, the prominence of the petroleum industry in both countries, and a desire to improve political relations on both sides. Factors shaping trust are pre-existing on the one hand, and determined by the actors' signals on the other. Different organisational and cultural preferences likewise play a role in the development of trust and degree of co-operation. This study argues that the current level of trust is neither high nor low when compared to other bi-lateral relations with Russia. While trust appears to have contributed to breakthroughs in co-operation such as the resolution of the maritime border and new joint ventures in oil exploration, a lack of trust owing to diverging interests and market forces is inhibiting collaboration in the realm of gas. This potentially puts Norway and Russia on a path to increased competition for their primary gas markets, first in Germany and then in the rest of continental Europe. As the two main gas suppliers of the EU, this suggests serious implications on the future of European gas markets, the return on investment for their upstream gas industries, and energy security in the region.Europ
Floquet topological system based on frequency-modulated classical coupled harmonic oscillators
We theoretically propose how to observe topological effects in a generic
classical system of coupled harmonic oscillators, such as classical pendula or
lumped-element electric circuits, whose oscillation frequency is modulated fast
in time. Making use of Floquet theory in the high frequency limit, we identify
a regime in which the system is accurately described by a Harper-Hofstadter
model where the synthetic magnetic field can be externally tuned via the phase
of the frequency-modulation of the different oscillators. We illustrate how the
topologically-protected chiral edge states, as well as the Hofstadter butterfly
of bulk bands, can be observed in the driven-dissipative steady state under a
monochromatic drive. In analogy with the integer quantum Hall effect, we show
how the topological Chern numbers of the bands can be extracted from the mean
transverse shift of the steady-state oscillation amplitude distribution.
Finally we discuss the regime where the analogy with the Harper-Hofstadter
model breaks down.Comment: 15 pages, 9 figure
- …
