4,293 research outputs found
Absorption-free optical control of spin systems:the quantum Zeno effect in optical pumping
We show that atomic spin motion can be controlled by circularly polarized
light without light absorption in the strong pumping limit. In this limit, the
pumping light, which drives the empty spin state, destroys the Zeeman coherence
effectively and freezes the coherent transition via the quantum Zeno effect. It
is verified experimentally that the amount of light absorption decreases
asymptotically to zero as the incident light intensity is increased.Comment: 4 pages with 4 figure
Demonstration of negative group delays in a simple electronic circuit
We present a simple electronic circuit which produces negative group delays
for base-band pulses. When a band-limited pulse is applied as the input, a
forwarded pulse appears at the output. The negative group delays in lumped
systems share the same mechanism with the superluminal light propagation, which
is recently demonstrated in an absorption-free, anomalous dispersive medium
[Wang et al., Nature 406, 277 (2000)]. In this circuit, the advance time more
than twenty percent of the pulse width can easily be achieved. The time
constants, which can be in the order of seconds, is slow enough to be observed
with the naked eye by looking at the lamps driven by the pulses.Comment: 6pages,8 figure
Generation of photon pairs using polarization-dependent two-photon absorption
We propose a new method for generating photon pairs from coherent light using
polarization-dependent two-photon absorption. We study the photon statistics of
two orthogonally polarized modes by solving a master equation, and show that
when we prepare a coherent state in one polarization mode, photon pairs are
created in the other mode. The photon pairs have the same frequency as that of
the incident light.Comment: 4 pages, 3 figures, submitted to PR
Simulation of Slow Light with Electronics Circuits
We present an electronic circuit which simulates wave propagation in
dispersive media. The circuit is an array of phase shifter composed of
operational amplifiers and can be described with a discretized version of
one-dimensional wave equation for envelopes. The group velocity can be changed
both spatially and temporarily. It is used to emulate slow light or stopped
light, which has been realized in a medium with electromagnetically induced
transparency (EIT). The group-velocity control of optical pulses is expected to
be a useful tool in the field of quantum information and communication.Comment: The following article has been submitted to the American Journal of
Physics. After it is published, it will be found at
http://scitation.aip.org/ajp (7 pages, 7 figures
On reversion phenomena in Cu-Zr-Cr alloys
Reversion phenomena in aged Cu-0.12% Zr-0.28% Cr alloy were investigated by means of resistivity measurement and transmission electron microscopy and compared with those of Cu-0.30% Zr and Cu-0.26% Cr alloys. Specimens in the form of a 0.5 mm sheet were solution-treated at 950 F for 1 hr water-quenched, aged, and finally reversed. The reversion phenomena were confirmed to exist in Cu-Zr and Cu-Zr-Cr alloys as well as Cu-Cr alloys, at aging temperatures of 300 to 500 F. The critical aging temperature for the reversion was not observed in all the alloys. Split aging increased the amount of reversion, particularly in Cu-Zr and Cu-Zr-Cr alloys, compared with that by conventional aging. The amount of reversion in Cu-Zr-Cr alloy was greatly affected by the resolution of Cr precipitate formed by preaging. Structural changes in Cu-Zr-Cr alloy due to the reversion were hardly observed by transmission electron microscopy
Quantum Zeno effect and adiabatic change
We show that the quantum Zeno effect and the adiabatic change have a close connection even though the former means a halt of the dynamics by frequent measurements and the latter is the dynamics by a slowly changing Hamiltonian. We investigate the motion of a spin under stepping magnetic fields in terms of the (inverse) quantum Zeno effect. The relation between this model and the adiabatic change is studied. Another model is used to integrate the two effects into one formulation which is an extension of the proof of the adiabatic theorem. Despite their good parallelism, the asymptotic behaviors of the transition probability with respect to the total period T have different forms; the former effect shows a T-1 behavior while the latter scales T-2
Broadband method for precise microwave spectroscopy of superconducting thin films near the critical temperature
We present a high-resolution microwave spectrometer to measure the
frequency-dependent complex conductivity of a superconducting thin film near
the critical temperature. The instrument is based on a broadband measurement of
the complex reflection coefficient, , of a coaxial transmission
line, which is terminated to a thin film sample with the electrodes in a
Corbino disk shape. In the vicinity of the critical temperature, the standard
calibration technique using three known standards fails to extract the strong
frequency dependence of the complex conductivity induced by the superconducting
fluctuations. This is because a small unexpected difference between the phase
parts of for a short and load standards gives rise to a large
error in the detailed frequency dependence of the complex conductivity near the
superconducting transition. We demonstrate that a new calibration procedure
using the normal-state conductivity of a sample as a load standard resolves
this difficulty. The high quality performance of this spectrometer, which
covers the frequency range between 0.1 GHz and 10 GHz, the temperature range
down to 10 K, and the magnetic field range up to 1 T, is illustrated by the
experimental results on several thin films of both conventional and high
temperature superconductors.Comment: 13 pages, 14 figure
- …