1,631 research outputs found

    Theoretical study of ferroelectric potassium nitrate

    Full text link
    We present a detailed study of the structural behavior and polarization reversal mechanism in phase III of KNO3_3, an unusual ferroelectric material in which the nitrate groups rotate during polarization reversal. This material was one of several studied in a previous work [O. Di\'eguez and D. Vanderbilt, Phys. Rev. Lett. {\bf 96}, 056401 (2006)] where methods were described for computing curves of energy versus electric polarization. In the present work we extend and systematize the previous first-principles calculations on KNO3_3, and analyze in detail a two-parameter model in which the energy of the system is written as a low-order expansion in the polarization and the nitrate group orientation. We confirm that this model reproduces the first-principles results for KNO3_3 very well and construct its parameter-space phase diagram, describing regions where unusual triple-well potentials appear. We also present first-principles calculations of KNO3_3 under pressure, finding that its energy-versus-polarization curves change character by developing a first-derivative discontinuity at zero polarization.Comment: Replaced with extended versio

    Superconductivity Controlled by Polarization in Field-Effect Devices of Confined Geometry

    Full text link
    We propose a concept for superconducting electric field-effect devices based on superconducting films sandwiched between ferroelectric layers. We provide theoretical calculations that indicate how the field effect in these devices could be amplified, which can be experimentally probed even at the current stage of film fabrication techniques.Comment: to appear in Applied Physics Letters, 3 pages RevTeX4, 3 figure

    Ferroelectricity in ultra-thin perovskite films

    Full text link
    We report studies of ferroelectricity in ultra-thin perovskite films with realistic electrodes. The results reveal stable ferroelectric states in thin films less than 10 \AA thick with polarization normal to the surface. Under short-circuit boundary conditions, the screening effect of realistic electrodes and the influence of real metal/oxide interfaces on thin film polarization are investigated. Our studies indicate that metallic screening from the electrodes is affected by the difference in work functions at oxide surfaces. We demonstrate this effect in ferroelectric PbTiO3_3 and BaTiO3_3 films.Comment: 4 pages in REVTEX4, 4 epsf figure

    Continuum Theory for Piezoelectricity in Nanotubes and Nanowires

    Full text link
    We develop and solve a continuum theory for the piezoelectric response of one dimensional nanotubes and nanowires, and apply the theory to study electromechanical effects in BN nanotubes. We find that the polarization of a nanotube depends on its aspect ratio, and a dimensionless constant specifying the ratio of the strengths of the elastic and electrostatic interactions. The solutions of the model as these two parameters are varied are discussed. The theory is applied to estimate the electric potential induced along the length of a BN nanotube in response to a uniaxial stress.Comment: 4 pages in RevTex4, 2 epsf figure

    Modulation of Superconducting Properties by Ferroelectric Polarization in Confined FE-S-FE Films

    Full text link
    We show that the electric polarization at the interface with ultrathin superconducting (S) films sandwiched between ferroelectric (FE) layers allows achievement of substantially stronger modulation of inner carrier density and superconducting transition temperature as compared to FE-S bilayers typically used in superconducting FETs. We find that not only the larger penetration depths but also the pairing symmetry should be responsible for the fact that the electric field effect in high temperature superconductors is much stronger than in conventional systems. Discussing the advantages of multilayers, we propose a novel design concept for superconducting electric field-effect transistors based on ferroelectric films.Comment: 5 pages RevTex4, 6 figure

    The structure of electronic polarization and its strain dependence

    Full text link
    The \phi(\kpp)\sim \kpp relation is called polarization structure. By density functional calculations, we study the polarization structure in ferroelectric perovskite PbTiO3_3, revealing (1) the \kpp point that contributes most to the electronic polarization, (2) the magnitude of bandwidth, and (3) subtle curvature of polarization dispersion. We also investigate how polarization structure in PbTiO3_3 is modified by compressive inplane strains. The bandwidth of polarization dispersion in PbTiO3_3 is shown to exhibit an unusual decline, though the total polarization is enhanced. As another outcome of this study, we formulate an analytical scheme for the purpose of identifying what determine the polarization structure at arbitrary \kpp points by means of Wannier functions. We find that \phi(\kpp) is determined by two competing factors: one is the overlaps between neighboring Wannier functions within the plane {\it perpendicular} to the polarization direction, and the other is the localization length {\it parallel} to the polarization direction. Inplane strain increases the former while decreases the latter, causing interesting non-monotonous effects on polarization structure. Finally, polarization dispersion in another paradigm ferroelectric BaTiO3_3 is discussed and compared with that of PbTiO3_3.Comment: 5 Figure

    Pressure-Induced Anomalous Phase Transitions and Colossal Enhancement of Piezoelectricity in PbTiO3_3

    Full text link
    We find an unexpected tetragonal-to-monoclinic-to-rhombohedral-to-cubic phase transition sequence induced by pressure, and a morphotropic phase boundary in a pure compound using first-principles calculations. Huge dielectric and piezoelectric coupling constants occur in the transition regions, comparable to those observed in the new complex single-crystal solid-solution piezoelectrics such as Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_{3}-PbTiO3_{3}, which are expected to revolutionize electromechanical applications. Our results show that morphotropic phase boundaries and giant piezoelectric effects do not require intrinsic disorder, and open the possibility of studying this effect in simple systems.Comment: 4 pages, to appear in Phys. Rev. Let

    Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Get PDF
    We report a model describing the molecular orientation disorder in CH3NH3PbI3, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab-initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current--voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.Comment: 10 pages; 4 figures, 2 SI figure

    Hexagonal ABCABC as semiconducting ferroelectrics

    Full text link
    We use a first-principles rational-design approach to identify a previously-unrecognized class of ferroelectric materials in the P63mcP63mc LiGaGe structure type. We calculate structural parameters, polarization and ferroelectric well depths both for reported and as-yet hypothetical representatives of this class. Our results provide guidance for the experimental realization and further investigation of high-performance materials suitable for practical applications.Comment: 5 pages, 2 figures, 3 table

    Dielectric and polarization experiments in high loss dielectrics: a word of caution

    Full text link
    The recent quest for improved functional materials like high permittivity dielectrics and/or multiferroics has triggered an intense wave of research. Many materials have been checked for their dielectric permittivity or their polarization state. In this report, we call for caution when samples are simultaneously displaying insulating behavior and defect-related conductivity. Many oxides containing mixed valent cations or oxygen vacancies fall in this category. In such cases, most of standard experiments may result in effective high dielectric permittivity which cannot be related to ferroelectric polarization. Here we list few examples of possible discrepancies between measured parameters and their expected microscopic origin
    corecore