275 research outputs found
Discrete port-controlled Hamiltonian dynamics and average passivation
The paper discusses the modeling and control of port-controlled Hamiltonian dynamics in a pure discrete-time domain. The main result stands in a novel differential-difference representation of discrete port-controlled Hamiltonian systems using the discrete gradient. In these terms, a passive output map is exhibited as well as a passivity based damping controller underlying the natural involvement of discrete-time average passivity
Integer filling metal insulator transitions in the degenerate Hubbard model
We obtain exact numerical solutions of the degenerate Hubbard model in the
limit of large dimensions (or large lattice connectivity). Successive
Mott-Hubbard metal insulator transitions at integer fillings occur at
intermediate values of the interaction and low enough temperature in the
paramagnetic phase. The results are relevant for transition metal oxides with
partially filled narrow degenerate bands.Comment: 4 pages + 4 figures (in 5 ps-files), revte
Interface superconductivity in LaNdSrCuO/LaSrCuO bilayers
We identify a distinct superconducting phase at the interface of a
LaNdSrCuO (LNSCO)/LaSrCuO
(LSCO) epitaxial bilayer system using ac screening measurements. A model based
on inter-diffusion of quasiparticles and condensate at the interface yields a
thickness of 25 nm for the interfacial layer. Two-dimensional
superconductivity of the interface layer appears to be governed by
Kosterlitz-Thouless-Berezinskii transition. A parallel magnetic field
suppresses the superconducting transition temperature of this layer with a pair
breaking parameter varying as
Approximate transverse feedback linearization under digital control
Thanks to a suitable redesign of the maps involved in the continuous-time solution, a digital design procedure preserving transverse feedback linearization up to a prefixed order of approximation in the sampling period is described. Simulated examples illustrate the results
Energy-Balance PBC of nonlinear dynamics under sampling and delays
The paper provides a new class of passivity-based controllers (PBCs) for stabilizing sampled-data input-delayed dynamics at a desired equilibrium via energy-balancing (EB) and reduction. Given a nonlinear dynamics under piecewise constant and retarded input, we first exhibit a new dynamics (the reduced dynamics) that is free of delays and equivalent to the original one. Accordingly, we design the digital controller assigning a suitable energetic behaviour to the reduced delay-free model with a stable target equilibrium. Then, it is proved that such a controller solves the EB-PBC problem on the original retarded system. The results are illustrated over a simple mechanical system
Planar spin exchange in LiNiO_2
We study the planar spin exchange couplings in LiNiO2 using a perturbative
approach. We show that the inclusion of the trigonal crystal field splitting at
the Oxygen sites leads to the appearance of antiferromagnetic exchange
integrals in deviation from the Goodenough-Kanamori-Anderson rules for this 90
degree bond. That gives a microscopic foundation for the recently observed
coexistence of ferromagnetic and antiferromagnetic couplings in the
orbitally-frustrated state of LiNiO2. (F. Reynaud et al, Phys. Rev. Lett. 86,
3638 (2001))Comment: latex, revtex4, 6 pages, 3 figure
A new connection protocol for multi-consensus of discrete-time systems
In this paper, a new connection protocol for consensus of multi-agent discrete-time systems under a general communication graph is proposed. In particular, the coupling is realized based on the outputs making each agent passive in the u-average sense so guaranteeing convergence to the agreement steady-state, with no need of mitigating the coupling gain, as typically done in concerned literature. The proposed connection rule is shown to apply for network dynamics under aperiodic sampling when the sampling sequence is known to all agents
Virtual Holonomic Constraints for Euler-Lagrange systems under sampling
In this paper, we consider the problem of imposing Virtual Holonomic Constraints to mechanical systems in Euler-Lagrangian form under sampling. An exact solution based on multi-rate sampling of order two over each input channel is described. The results are applied to orbital stabilization of the pendubot with illustrative simulations
Robust half-metallic antiferromagnets LaVOsO and LaMoO ( = Ca, Sr, Ba; = Re, Tc) from first-principles calculations
We have theoretically designed three families of the half-metallic (HM)
antiferromagnets (AFM), namely, LaVOsO, LaMoTcO and
LaMoReO ( = Ca, Sr, Ba), based on a systematic {\it ab initio} study
of the ordered double perovskites LaO with the possible and
pairs from all the 3, 4 and 5 transtion metal elements being
considered. Electronic structure calculations based on first-principles
density-functional theory with generalized gradient approximation (GGA) for
more than sixty double perovskites LaCaO have been performed using the
all-electron full-potential linearized augmented-plane-wave method. The found
HM-AFM state in these materials survives the full {\it ab initio} lattice
constant and atomic position optimizations which were carried out using
frozen-core full potential projector augmented wave method. It is found that
the HM-AFM properties predicted previously in some of the double perovskites
would disappear after the full structural optimizations. The AFM is attributed
to both the superexchange mechanism and the generalized double exchange
mechanism via the () - O (2) - () coupling
and the latter is also believed to be the origin of the HM. Finally, in our
search for the HM-AFMs, we find LaCrTcO and LaCrReO to be AFM
insulators of an unconventional type in the sense that the two
antiferromagnetic coupled ions consist of two different elements and that the
two spin-resolved densities of states are no longer the same.Comment: To appear in Phys. Rev.
Electric instability in superconductor-normal conductor ring
Non-linear electrodynamics of a ring-shaped Andreev interferometer
(superconductor-normal conductor-superconductor hybrid structure) inductively
coupled to a circuit of the dissipative current is investigated. The
current-voltage characteristics (CVC) is demonstrated to be a series of loops
with several branches intersecting in the CVC origin. The sensitivity of the
transport current to a change of the applied external magnetic flux can be
comparable to the one of the conventional SQUID's. Spontaneous arising of
coupled non-linear oscillations of the transport current, the Josephson current
and the magnetic flux in Andreev interferometers are also predicted and
investigated. The frequency of these oscillations can be varied in a wide
range, while the maximal frequency can reach
.Comment: 4 pages, 4 figure
- …