635 research outputs found

    Electroweak lights from Dark Matter annihilations

    Full text link
    The energy spectra of Standard Model particles originated from Dark Matter annihilations can be significantly altered by the inclusion of electroweak gauge boson radiation from the final state. A situation where this effect is particularly important is when a Majorana Dark Matter particle annihilates into two light fermions. This process is in p-wave and hence suppressed by the small value of the relative velocity of the annihilating particles. The inclusion of electroweak radiation eludes this suppression and opens up a potentially sizeable s-wave contribution to the annihilation cross section. I will discuss the impact of this effect on the fluxes of stable particles resulting from the Dark Matter annihilations, which are relevant for Dark Matter indirect searches.Comment: 4 pages, 2 figures. Contribution to the conference proceedings of TAUP 2011, Munich - Germany (5-9 September 2011

    The BFKL Equation at Next-to-Leading Order and Beyond

    Get PDF
    On the basis of a renormalization group analysis of the kernel and of the solutions of the BFKL equation with subleading corrections, we propose and calculate a novel expansion of a properly defined effective eigenvalue function. We argue that in this formulation the collinear properties of the kernel are taken into account to all orders, and that the ensuing next-to-leading truncation provides a much more stable estimate of hard Pomeron and of resummed anomalous dimensions.Comment: LaTex, 12 pages, 1 eps figur

    Towards Collinear Evolution Equations in Electroweak Theory

    Get PDF
    We consider electroweak radiative corrections to hard inclusive processes at the TeV scale, and we investigate how collinear logarithms factorize in a spontaneously broken gauge theory, similarly to the DGLAP analysis in QCD. Due to the uncancelled double logs noticed previously, we find a factorization pattern which is qualitatively different from the analogous one in QCD. New types of splitting functions emerge which are needed to describe the initial beam charges and are infrared-sensitive, that is dependent on an infrared cutoff provided, ultimately, by the symmetry breaking scale. We derive such splitting functions at one-loop level in the example of SU(2) gauge theory, and we also discuss the structure functions' evolution equations, under the assumption that isospin breaking terms present in the Ward identities of the theory are sufficiently subleading at higher orders.Comment: 5 pages, 3 figure

    Initial State Radiation in Majorana Dark Matter Annihilations

    Full text link
    The cross section for a Majorana Dark Matter particle annihilating into light fermions is helicity suppressed. We show that, if the Dark Matter is the neutral Majorana component of a multiplet which is charged under the electroweak interactions of the Standard Model, the emission of gauge bosons from the initial state lifts the suppression and allows an s-wave annihilation. The resulting energy spectra of stable Standard Model particles are importantly affected. This has an impact on indirect searches for Dark Matter.Comment: 9 pages, 3 figure

    A collinear model for small-x physics

    Get PDF
    We propose a simple model for studying small-x physics in which we take only the collinearly enhanced part of leading and subleading kernels, for all possible transverse momentum orderings. The small-x equation reduces to a second order differential equation in t=log k^2/Lambda^2 space, whose perturbative and strong-coupling features are investigated both analytically and numerically. For two-scale processes, we clarify the transition mechanism between the perturbative, non Regge regime and the strong-coupling Pomeron behavior.Comment: 22 pages, 8 figures, LaTeX file, uses JHEP.cl

    Minimal Subtraction vs. Physical Factorisation Schemes in Small-x QCD

    Full text link
    We investigate the relationship of ``physical'' parton densities defined by kt-factorisation, to those in the minimal subtraction scheme, by comparing their small-x behaviour. We first summarize recent results on the above scheme change derived from the BFKL equation at NLx level, and we then propose a simple extension to the renormalisation-group improved (RGI) equation. In this way we are able the examine the difference between resummed gluon distributions in the Q_0 and MSbar schemes and also to show MSbar scheme resummed results for P_gg and approximate ones for P_qg. We find that, due to the stability of the RGI approach, small-x resummation effects are not much affected by the scheme-change in the gluon channel, while they are relatively more sensitive for the quark-gluon mixing.Comment: 14 pages, 8 figure

    Electroweak Sudakov Logarithms and Real Gauge-Boson Radiation in the TeV Region

    Full text link
    Electroweak radiative corrections give rise to large negative, double-logarithmically enhanced corrections in the TeV region. These are partly compensated by real radiation and, moreover, affected by selecting isospin-noninvariant external states. We investigate the impact of real gauge boson radiation more quantitatively by considering different restricted final state configurations. We consider successively a massive abelian gauge theory, a spontaneously broken SU(2) theory and the electroweak Standard Model. We find that details of the choice of the phase space cuts, in particular whether a fraction of collinear and soft radiation is included, have a strong impact on the relative amount of real and virtual corrections.Comment: 20 pages, 4 figure

    A solvable model for small-x physics in D > 4 dimensions

    Full text link
    I present a simplified model for the gluon Green's function governing high-energy QCD dynamics, in arbitrary space-time dimensions. The BFKL integral equation (either with or without running coupling) reduces to a second order differential equation that can be solved in terms of Bessel and hypergeometric functions. Explicit expressions for the gluon density and its anomalous dimension are derived in MS and Q_0 factorization schemes. This analysis illustrates the qualitative features of the QCD gluon density in both factorization schemes. In addition, it clarifies the mathematical properties and validates the results of the ``gamma-representation'' method proposed by M.Ciafaloni and myself for extracting resummed next-to-leading-log x anomalous dimensions of phenomenological relevance in the two schemes.Comment: 30 pages, 9 figure
    • …