1,497 research outputs found

    Fundamental Approach to the Cosmological Constant Issue

    Full text link
    The issue of the cosmological constant is discussed in details and a solution to the problem is suggested.Comment: 13 pages in LaTeX with 3 figures in eps files, paper presented at the Fifth Friedmann Seminar; the cls file necessary for successful PostScript generation is also attache

    Spheroidal and elliptical galaxy radial velocity dispersion determined from Cosmological General Relativity

    Full text link
    Radial velocity dispersion in spheroidal and elliptical galaxies, as a function of radial distance from the center of the galaxy, has been derived from Cosmological Special Relativity. For velocity dispersions in the outer regions of spherical galaxies, the dynamical mass calculated for a galaxy using Carmelian theory may be 10 to 100 times less than that calculated from standard Newtonian physics. This means there is no need to include halo dark matter. The velocity dispersion is found to be approximately constant across the galaxy after falling from an initial high value at the center.Comment: 10 pages, 3 figure

    Particle Pair Production in Cosmological General Relativity

    Full text link
    The Cosmological General Relativity (CGR) of Carmeli, a 5-dimensional (5-D) theory of time, space and velocity, predicts the existence of an acceleration a_0 = c / tau due to the expansion of the universe, where c is the speed of light in vacuum, tau = 1 / h is the Hubble-Carmeli time constant, where h is the Hubble constant at zero distance and no gravity. The Carmeli force on a particle of mass m is F_c = m a_0, a fifth force in nature. In CGR, the effective mass density rho_eff = rho - rho_c, where rho is the matter density and rho_c is the critical mass density which we identify with the vacuum mass density rho_vac = -rho_c. The fields resulting from the weak field solution of the Einstein field equations in 5-D CGR and the Carmeli force are used to hypothesize the production of a pair of particles. The mass of each particle is found to be m = tau c^3 / 4 G, where G is Newton's constant. The vacuum mass density derived from the physics is rho_vac = -rho_c = -3 / (8 pi G tau^2). The cosmic microwave background (CMB) black body radiation at the temperature T_o = 2.72548 K which fills that volume is found to have a relationship to the ionization energy of the Hydrogen atom. Define the radiation energy epsilon_gamma = (1 - g) m c^2 / N_gamma, where (1-g) is the fraction of the initial energy m c^2 which converts to photons, g is a function of the baryon density parameter Omega_b and N_gamma is the total number of photons in the CMB radiation field. We make the connection with the ionization energy of the first quantum level of the Hydrogen atom by the hypothesis epsilon_gamma = [(1 - g) m c^2] / N_gamma = alpha^2 mu c^2 / 2, where alpha is the fine-structure constant and mu = m_p f / (1 + f), where f= m_e / m_p with m_e the electron mass and m_p the proton mass.Comment: 14 pages, 0 figures. The final publication is available at springerlink.co

    Cosmological Relativity: A General-Relativistic Theory for the Accelerating Expanding Universe

    Get PDF
    Recent observations of distant supernovae imply, in defiance of expectations, that the universe growth is accelerating, contrary to what has always been assumed that the expansion is slowing down due to gravity. In this paper a general-relativistic cosmological theory that gives a direct relationship between distances and redshifts in an expanding universe is presented. The theory is actually a generalization of Hubble's law taking gravity into account by means of Einstein's theory of general relativity. The theory predicts that the universe can have three phases of expansion, decelerating, constant and accelerating, but it is shown that at present the first two cases are excluded, although in the past it had experienced them. Our theory shows that the universe now is definitely in the stage of accelerating expansion, confirming the recent experimental results

    Covariant Irreducible Parametrization of Electromagnetic Fields in Arbitrary Spacetime

    Full text link
    We present a new unified covariant description of electromagnetic field properties for an arbitrary space-time. We derive a complete set of irreducible components describing a six-dimensional electromagnetic field from the Maxwell and metric tensors using the symmetry group SL(2,C). For the special case of a flat space-time metric the components are shown to correspond to the scalar invariants of the electromagnetic field, the energy-momentum-stress tensor and in addition, three new tensors expressing physical observables of rank two and four, respectively. We make a physical interpretation of one of the new rank two tensors as describing a classical intrinsic spin of the electromagnetic field.Comment: 11 pages, no figures, Will appear in J. Math. Phys., January (2006

    Carmeli's accelerating universe is spatially flat without dark matter

    Full text link
    Carmeli's 5D brane cosmology has been applied to the expanding accelerating universe and it has been found that the distance redshift relation will fit the data of the high-z supernova teams without the need for dark matter. Also the vacuum energy contribution to gravity indicates that the universe is asymptotically expanding towards a spatially flat state, where the total mass/energy density tends to unity.Comment: 4 pages, 5 figures, accepted for publication in Int. J. Theor. Physics, this paper is based on an invited talk at FFP6, Udine, Italy, Sept 200

    Finite bounded expanding white hole universe without dark matter

    Full text link
    The solution of Einstein's field equations in Cosmological General Relativity (CGR), where the Galaxy is at the center of a finite yet bounded spherically symmetrical isotropic gravitational field, is identical with the unbounded solution. This leads to the conclusion that the Universe may be viewed as a finite expanding white hole. The fact that CGR has been successful in describing the distance modulus verses redshift data of the high-redshift type Ia supernovae means that the data cannot distinguish between unbounded models and those with finite bounded radii of at least cτc \tau. Also it is shown that the Universe is spatially flat at the current epoch and has been at all past epochs where it was matter dominated.Comment: 11 pages, revised versio
    • …
    corecore